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`çéóêáÖÜí=åçíáÅÉW
kç=é~êí=çÑ=íÜáë=ã~åì~ä=ã~ó=ÄÉ=éÜçíçÅçéáÉÇI=êÉéêçÇìÅÉÇI=çê=íê~åëä~íÉÇ=ïáíÜçìí=ïêáííÉå=éÉêãáëëáçå=çÑ=íÜÉ=
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t^pv=GmbH fåëíáíìíÉ=Ñçê=t~íÉê=oÉëçìêÅÉë=mä~ååáåÖ =~å Ç=póëíÉãë=oÉëÉ~êÅÜI===
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`çåíÉåíë
`çåíÉåíë
NK=oÉ~ÅíáîÉ=ãìäíáJëéÉÅáÉë=íê~åëéçêíK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K R

NKN= fåíêçÇìÅíáçå=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KR äÉãë =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= PQ

NKO= qÜÉçêó =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KR
NKOKN= oÉ~Åíáçå=âáåÉíáÅë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KR
NKOKNKN= póãÄçäáÅ=êÉ~Åíáçå=ëíçáÅÜáçãÉíêó K=K=K=K=K=K=K=K=K=K=K=K=K=K=KR
NKOKNKO= bñ~ãéäÉë =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KS
NKOKO= dçîÉêåáåÖ=íê~åëéçêí=Éèì~íáçåë=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KT
NKOKOKN= _~ëáÅ=Ä~ä~åÅÉ=ëí~íÉãÉåíëK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KT
NKOKOKO= dÉåÉê~äáòÉÇ=Ä~ä~åÅÉ=Éèì~íáçåë=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KU
NKOKOKP= cáå~ä=Éèì~íáçåë=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KV
NKOKP= oÉ~Åíáçå=ê~íÉë=oâK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNN
NKOKPKN= aÉÖê~Ç~íáçå=íóéÉ=âáåÉíáÅë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNN
NKOKPKO= ^êêÜÉåáìë=íóéÉ=âáåÉíáÅë =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNO
NKOKPKP= jçåçÇ=íóéÉ=âáåÉíáÅë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNO
NKOKPKQ= m~ê~ääÉä=áêêÉîÉêëáÄäÉ=~åÇ=êÉîÉêëáÄäÉ=êÉ~Åíáçåë K=K=K=K=K=KNQ
NKP= kìãÉêáÅ~ä=pçäìíáçå K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNQ
NKPKN= cáåáíÉJÉäÉãÉåí=Éèì~íáçå=ëóëíÉãK=K=K=K=K=K=K=K=K=K=K=K=K=K=KNQ
NKPKO= ^Ç~éíáîÉ=éêÉÇáÅíçêJÅçêêÉÅíçê=íáãÉJëíÉééáåÖ=ëçäìíáçå=

ëíê~íÉÖóK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNS
NKQ= oÉä~íÉÇ=cbcilt=aá~äçÖë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOM
NKQKN= jìäíáJëéÉÅáÉë=éêçÄäÉã=Åä~ëë=ëéÉÅáÑáÅ~íáçåK=K=K=K=K=K=K=KOM
NKQKO= péÉÅáÉë=ëÉäÉÅíçêK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOM
NKQKP= jìäíáJëéÉÅáÉë=ã~íÉêá~ä=Ç~í~=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KON
NKR= oÉ~Åíáçå=háåÉíáÅë=bÇáíçêK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KON
NKRKN= mêÉÅçãéáäÉÇ=ê~íÉ=ÉñéêÉëëáçåë =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOO
NKRKNKN= aÉÖê~Ç~íáçå=íóéÉ=âáåÉíáÅë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOO
NKRKNKO= ^êêÜÉåáìë=íóéÉ=âáåÉíáÅë =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOP
NKRKNKP= jçåçÇ=íóéÉ=âáåÉíáÅë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOQ
NKRKO= rëÉêJÇÉÑáåÉÇ=ê~íÉ=ÉñéêÉëëáçåëW=cbj^qeba=ÉÇáíçê =KOQ
NKS= j~ëë=j~íÉêá~ä=a~í~=çÑ=jìäíáJpéÉÅáÉë=qê~åëéçêí =K=K=KOT
NKT= kçíÉ=íç=s~êá~ÄäÉJaÉåëáíó=cäçï=~åÇ=jìäíáJpéÉÅáÉë=

qê~åëéçêí =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KPN
NKTKN= jìäíáJëéÉÅáÉë=ÇÉåëáíó=êÉä~íáçå =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KPN
NKTKO= léíáçå=ëÉííáåÖë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KPO
NKTKP= jìäíáéäÉ=ëéÉÅáÉëJÇÉéÉåÇÉåí=ÇÉåëáíó=ê~íáç =K=K=K=K=K=K=KPO
NKTKQ= `çåëí~åí=ëçäìí~ä=ÇÉåëáíó=ê~íáç =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KPP
NKTKR= sáëÅçëáíó=êÉä~íáçåë=Ñçê=ãìäíáJëéÉÅáÉë=íê~åëéçêí=éêçÄJ
NKU= bñ~ãéäÉë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= PR
NKUKN= pÉêá~äJé~ê~ääÉä=êÉ~Åíáçåë=~åÇ=Åçãé~êáëçå=íç=íÜÉ=~å~äóíJ

áÅ~ä=ëçäìíáçå=Äó=pìå=Éí=~äK K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= PR
NKUKNKN= pí~íÉãÉåí=çÑ=íÜÉ=Na=éêçÄäÉã =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= PR
NKUKNKO= ^å~äóíáÅ~ä=ëçäìíáçå=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= PS
NKUKNKP= kìãÉêáÅ~ä=~å~äóëáë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= PT
NKUKNKQ= oÉëìäíë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= PT
NKUKNKR= Pa=ãìäíáJëéÉÅáÉë=íê~åëéçêí=ïáíÜ=ÑáêëíJçêÇÉê=ÇÉÖê~Ç~J

íáçå=êÉ~Åíáçå=âáåÉíáÅë=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= PV
NKUKO= o~íÉJäáãáíÉÇ=ÇÉëçêéíáçå=~åÇ=ÇÉÅ~óW=`çãé~êáëçå=íç=

cêó=Éí=~äKÛë=~å~äóíáÅ~ä=ëçäìíáçå K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= QO
NKUKOKN= pí~íÉãÉåí=çÑ=íÜÉ=Na=éêçÄäÉã =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= QO
NKUKOKO= kìãÉêáÅ~ä=~å~äóëáë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= QP
NKUKOKP= oÉëìäíë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= QQ
NKUKP= qïçJëáíÉ=ÉèìáäáÄêáìãLâáåÉíáÅ=ëçêéíáçå=ïáíÜ=ÇÉÖê~Ç~J

íáçåW=`çãé~êáëçå=íç=pq^kjla=~å~äóíáÅ~ä=ëçäìíáçåë =
=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= QQ

NKUKPKN= mêçÄäÉã=Ñçêãìä~íáçå=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= QQ
NKUKPKO= pí~íÉãÉåí=çÑ=~=Na=íÉëí=Å~ëÉ K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= QS
NKUKPKP= kìãÉêáÅ~ä=~å~äóëáë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= QT
NKUKPKQ= oÉëìäíë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= QU
NKV= pÉèìÉåíá~ä=~åÇ=kçåJëÉèìÉåíá~ä=`Üäçêáå~íÉÇ=pçäîÉåíë=

aÉÖê~Ç~íáçå=ìåÇÉê=s~êá~ÄäÉ=^ÉêçÄáÅJ^å~ÉêçÄáÅ=`çåJ
Çáíáçåë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= QV

NKVKN= fåíêçÇìÅíáçå =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= QV
NKVKO= `çåÅÉéíì~ä=éêçÄäÉã=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= RM
NKVKP= bèì~íáçåë=çÑ=ã~ëë=íê~åëéçêí=ïáíÜ=ëÉèìÉåíá~ä=~åÇ=åçåJ

ëÉèìÉåíá~ä=êÉ~Åíáçå =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= RM
NKVKQ= oÉ~Åíáçå=ê~íÉë =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= RN
NKVKR= kìãÉêáÅ~ä=ãçÇÉä K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= RO
NKVKS= páãìä~íáçå=êÉëìäíë =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= RQ
NKVKT= ^ÅâåçïäÉÇÖÉãÉåíë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= RU
NKNM= pìãã~êó=~åÇ=`çåÅäìëáçåëK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= RU

kçí~íáçå=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= RV
oÉÑÉêÉåÅÉë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= SN
cbcilt=ö=ááá



áî=ö=tÜáíÉ=m~éÉêë=J=sçäK=fs

`çåíÉåíë
OK=m~ê~ãÉíÉê=Éëíáã~íáçå=çÑ=íê~åëáÉåí=Ñäçï=éêçÄäÉãë=ïáíÜ=mbpq=áå=cbcilt=K=K=K= SP

OKN= fåíêçÇìÅíáçå=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KSP OKOKP= táÅÜáí~=éìãé=íÉëí K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=TQ

OKO= qÉëí=bñ~ãéäÉë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KSR
OKOKN= qÜÉáëD=ïÉää=éêçÄäÉã K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KSR
OKOKO= _êÉóÉää=éìãé=íÉëí =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KST
OKOKQ= cäççÇï~îÉ=éêçÄäÉã K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=TU
OKP= `çåÅäìÇáåÖ=oÉã~êâë =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=UM

oÉÑÉêÉåÅÉë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=UN
PK=_ÉåÅÜã~êâáåÖ=î~êá~ÄäÉJÇÉåëáíó=Ñäçï=~åÇ=íê~åëéçêí=áå=éçêçìë=ãÉÇá~=Åçåí~áåáåÖ=
~å=áåÅäáåÉÇ=Ñê~ÅíìêÉ=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= UP

PKN= fåíêçÇìÅíáçå=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KUP PKOKP= páãìä~íáçå=êÉëìäíëK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=US

PKO= s~êá~ÄäÉJÇÉåëáíó=cäçï=áå=~=mçêçìë=j~íêáñ=ïáíÜ=~=QRçJ

fåÅäáåÉÇ=cê~ÅíìêÉ K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KUP
PKOKN= pí~íÉãÉåí=çÑ=íÜÉ=Oa=éêçÄäÉã K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KUP
PKOKO= dçîÉêåáåÖ=Éèì~íáçåëK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KUR
PKP= pìãã~êó=~åÇ=`çåÅäìëáçåëK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=UV
PKQ= kçí~íáçå=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=UV

oÉÑÉêÉåÅÉë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=VM
QK=kìãÉêáÅ~ä=ëáãìä~íáçå=çÑ=î~êá~ÄäÉJÇÉåëáíó=ãìäíáÇáÑÑìëáîÉ=ÑáåÖÉêáåÖ=ÅçåîÉÅíáçå=
éÜÉåçãÉå~=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= VP

QKN= fåíêçÇìÅíáçå=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KVP QKQKO= _çìåÇ~êó=~åÇ=áåáíá~ä=ÅçåÇáíáçåëI=éÉêíìêÄ~íáçå=çÑ=áåáíá~ä=

QKO= _~ëáÅ=bèì~íáçåë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KVQ
QKP= cáåÖÉê=jçÇÉä=mêçÄäÉãK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KVR
QKQ= kìãÉêáÅ~ä=jçÇÉäáåÖ K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNMM
QKQKN= pé~íá~ä=~åÇ=íÉãéçê~ä=ÇáëÅêÉíáò~íáçåI=áíÉê~íáçå=ëíê~íÉÖó=

~åÇ=ìëÉÇ=ëçäîÉêë=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNMM
ëçäìíÉ=áåíÉêÑ~ÅÉ =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=NMO
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Starting with release 5.2, FEFLOW5 solves reactive
multi-species transport processes in multi-dimensional
(2D, 3D) porous media under variably saturated, vari-
able-density and nonisothermal conditions involving
an arbitrary number of species. A given species can be
either mobile, i.e., associated with a fluid (aqueous)
phase, or immobile, i.e., associated with a solid phase.
Chemicals in a fluid phase are subject to advection and
dispersion, while in a solid phase there is no advection
and dispersion.

FEFLOW provides enhanced tools in introducing
and editing reactive multi-species transport problems.
A powerful new reaction kinetics editor, FEMATHED,
allows the user to freely define chemical or biochemi-
cal reactions in a fully graphics-based and interactive
manner without requiring any programming or code
compiling. Furthermore, the rate equations can be com-
bined with conditional (if-else) expressions allowing a
high degree of freedom in formulating the chemical
reaction kinetics. FEFLOW incorporates a fast code
interpreter for the user-defined reactions. The computa-
tional performance is comparable to precompiled code.
Precompiled code versions of reaction kinetics are
available for reactions of the degradation, Arrhenius
and Monod type.

NKO qÜÉçêó

NKOKN oÉ~Åíáçå=âáåÉíáÅë

NKOKNKN póãÄçäáÅ=êÉ~Åíáçå=ëíçáÅÜáçãÉíêó

The basis of the chemical modeling represents the
equations of reactions  which can be written in their
general stoichiometric symbolic form4 (symbols are
summarized in the Appendix Notation):

r

(1-1)ν1r A1 ν2r A2 … νN°r AN°    ν N° 1+( )r B N° 1+( ) ν N° 2+( )r B N° 2+( ) … νNr BN+ + +→+ + +
N
oÉ~ÅíáîÉ=ãìäíáJëéÉÅáÉë=íê~åëéçêí
H.-J. G. Dierscha,  A. Pönitza, D. Etcheverryb & Y. Rossierb

aWASY Institute for Water Resources Planning and Systems Research, Berlin, Germany
bSita Remediation SAS, Meyzieu, France
cbcilt=ö=R
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for      (  = number of reactants)
and 

which is related and quantified by the stoichiometric
coefficients . The algebraic stoichiometric num-
bers  are subject to:

  for     (reactants)
  for    (products).

In (1-1) A and B represent chemical species (reactants
and products, respectively) and the symbol  iden-
tifies the direction of the irreversible (nonequilibrium)
reactions.

NKOKNKO bñ~ãéäÉë

To illustrate the symbolic reaction stoichiometry
(1-1) we exemplify the following reactions occurring
in different applications of subsurface mass transport
simulations.

(i) Pyrite oxidation
One mechanism involves oxidation of pyrite by O2.
Another possible mechanism for the oxidation of pyrite
is the reaction with Fe(III) as the oxidant. These reac-
tions for the pyrite oxidation read19:

(1-2)

(ii) Aerobic biodegradation of BTEX
The overall aerobic reaction stoichiometry for a fuel
hydrocarbon (e.g., benzene) can be written as1,3

N° N< N°
r 1 … Nr, ,=

νkr
νkr

νkr 0< 1 k N°≤ ≤
νkr 0> N° k N≤<

  →

FeS2
7
2
---O2 H2O Fe+2 2SO4

2- 2H++ +→+ +

FeS2 14Fe3+ 8H2O 15Fe2+ 2SO4
2- 16H++ +→+ + ⎭

⎪
⎬
⎪
⎫

(1-3)

(iii) Degradation of BTEX using multiple electron
acceptors
The biodegradation of BTEX can occur via five differ-
ent degradation pathways1,17,23: aerobic respiration,
denitrification, iron reduction, sulfate reduction and
methanogenesis. Accordingly, the following instanta-
neous five reactions are given ( ):

(1-4)

(iv) Leaching of low-grade uranium ores
Two principal types of low-grade uranium ores are ura-
ninite (UO2) and pitchblende (U3O8). Typical reaction
equations may be written as16

(1-5)

consisting of four reactants  for each reaction.

(v) Radionuclide decay chain of uranium
The radionuclide decay of 238U occurs in the following
decay series of serial and parallel reactions (note that U
- uranium, Th - thorium, Pa - protactinium, Ra -
radium, Rn - radon, Po - polonium, Pb - lead, Bi - bis-
muth, At - astatine, Tl - thallium)12:

C6H6 7.5O2 6CO2 3H2O+→+

Nr 5=

C6H6 7.5O2 6CO2 3H2O+→+

6NO3
- 6H+ C6H6 6CO2 6H2O 3N2++→+ +

30Fe(OH)3 60H+ C6H6 6CO2 78H2O 30Fe2+++→+ +

3.75 SO4
2- 7.5H+ C6H6 6CO2 3H2O 3.75 H2S+ +→+ +

C6H6 4.5 H2O 2.25 CO2 3.75 CH4+→+
⎭
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎫

UO2
1
2
---O2 CO3

2- 2HCO3
- UO2(CO3)3

4- H2O+→+ + +

U3O8
1
2
---O2 3CO3

2- 6HCO3
- 3UO2(CO3)3

4- 3H2O+→+ + + ⎭
⎪
⎬
⎪
⎫

N° 4=( )
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(1-6)

 
 
 
 
 
 ⎭
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎫

NKOKO dçîÉêåáåÖ=íê~åëéçêí=Éèì~íáçåë
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The mass conservation of chemical species in the
fluid  and solid  phases of a porous medium can be
concisely written in the following form4,5,8,14, assuming
that each species  exists (per definition) only in one
phase (  or ):

f s

k
f s
where each species, labeled by the subscript , is asso- = tensor of hydrodynamic dispersion of

(1-7)

(1-8)

t∂
∂ εαCk

α( ) ∇ Dk
α ∇Ck

α⋅( ) ∇ qαCk
α( ) εαQk

α–⋅+⋅– Rk=

α f s  (fluid, solid),=

qα Ddk

α   0    for    α≡ s (solid)= =

k 1 … N, ,=⎩
⎪
⎨
⎪
⎧

Rk εαRhomk

α Rhetk
+=

Rk
k 1=

N

∑ 0=

Dk
α εαDdk

α βT q α+( )I βL βT–( )qα qα⊗

q α
-------------------+=

⎭
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎫

k Dα
ciated with a particular phase , where f and s
indicate the fluid and the solid phase, respectively. In
(1-7) we have

= concentration of species  of -phase;

α f s,( )∈

Ck
α k α
species  of -phase;
= coefficient of molecular diffusion of

species  of -phase;
= unit tensor;
= species indicator, ;

k
k α

Ddk

α

k α
I
k k 1 … N, ,=
cbcilt=ö=T
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= total number of chemical species;
= zero-order nonreactive production term of

-phase;
= , Darcy flux of -phase;
= pore velocity of -phase;
= bulk rate of chemical reaction of species ;
= homogeneous rate of reaction of species 

within the -phase;
= heterogeneous rate reaction of species 

associated with different phases;
= phase indicator, ;
= longitudinal and transverse dispersivity of

porous medium, respectively.
= volume fraction of -phase;

Considering the fluid phase as a wetting liquid in an
unsaturated porous medium, it is often convenient to

N
Qk

α

α
qα εαvα α
vα α
Rk k
Rhomk

α k
α

Rhetk
k

α α f s …, ,=
βL βT,

εα α
express the volume fraction  for the fluid phase
 and for one solid phase  in a porous

medium as

(1-9)

with

(1-10)

where  is the porosity (void space) of the porous
medium, and  is the saturation referring to the fluid
(liquid) f-phase. For saturated media we have 
and . Using (1-9) the balance equations (1-7) can
be written for the f- and s-phases in their specific forms
according to

εα
α f= α s=

εf sfε= εs 1 ε–=

0 sf< 1≤

ε
sf

sf 1≡
εf ε=
where (1-11) can also be subjected to a reversible equilibrium

(1-11)
t∂

∂ sfεCk
f( ) ∇ Dk

f ∇Ck
f⋅( ) ∇ qfCk

f( ) sfQk
f–⋅+⋅– Rk= fluid phase  f  and species  k

t∂
∂ εsCk

s( ) Qk
s– Rk= solid phase  s  and species  k
= , bulk zero-order nonreactive
production term of fluid phase and fluid
species k;

= , bulk zero-order nonreactive
production term of solid phase and solid
species k;

NKOKOKO dÉåÉê~äáòÉÇ=Ä~ä~åÅÉ=Éèì~íáçåë

Let us assume that a species k of a fluid phase f for

Qk
f

εQk
f

Qk
s

εsQk
s

reaction with a species, say m, which is associated with
the solid phase s, so that we find the adsorption
isotherms8

(1-12)

where  is the fluid species,  is the sorbed (solid)
species, and the symbol  identifies reversible reac-
tions at a chemical equilibrium. The law of mass action

  →νk Ak
f νm Am

s         νk Ak
s νm Am

f++   ←

Ak
f Am

s

  →  ←
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(LMA)8 can be used to explicitly express the (sorbed)
solid species  as a function of the (dissolved) fluid
species , viz.8,

(1-13)

where  is the adsorption function, which
can be dependent on .

As stated in8 for equilibrium reactions (adsorptions)
under unsaturated conditions the solid volume fraction

 should be subdivided into chemically active and
inactive parts . It is shown8 that

. Then, the balance equations for
species k and m can be written as

(1-14)

(Note that we identify the chemical rates by * for spe-
cies having additionally equilibrium reactions.) Using
the adsorption isotherms (1-13) the following balance
equation results after summation of both equations
(1-14)

(1-15)

where the retardation factor  is introduced accord-

Cm
s

Ck
f

Cm
s χk Ck

f⋅=

χk χk Ck
f( )=

Ck
f

εs
εs εsactive εsinactive+=

εsactive f εf( )εs sfεs≈=

t∂
∂ sfεCk

f( ) ∇ Dk
f ∇Ck

f⋅( ) ∇ qfCk
f( ) sfQk

f–⋅+⋅– Rk∗=

t∂
∂ εsactiveCm

s( ) εsactiveQm
s– Rm∗=

t∂
∂ sfεℜkCk

f( ) ∇ Dk
f ∇Ck

f⋅( ) ∇ qfCk
f( )

sf Qk
f Qm

s+( )

Qk

–

⋅+⋅–

Rk∗ Rm∗ Ck
f( )+

Rk

=

⎧ ⎪ ⎨ ⎪ ⎩ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

ℜk
ing to8

(1-16)

with the adsorption function 

(1-17)

where  correspond to sorption coeffi-
cients.

NKOKOKP cáå~ä=Éèì~íáçåë

In summation we use the following generalized
mass balance equations for chemically reacting species
k in the fluid phase f and solid phase s (species

 are subjected to nonequilibrium reac-
tions):

ℜk 1 1 ε–
ε

-----------χk+=

χk

χk

κ Henry
k1

1 k2Ck
f+

--------------------- Langmuir

b1Ck
f b2 1–( )

Freundlich
⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

=

κ k1 k, 2 b1 b2, , ,

k 1 … N, ,=
cbcilt=ö=V
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s

(1-18)

(1-19)

t∂
∂ sfεℜkCk

f( ) ∇ Dk
f ∇Ck

f⋅( ) ∇ qfCk
f( ) sfQk–⋅+⋅– Rk= fluid phase  f  and species  k   

t∂
∂ εsCk

s( ) Qk
s– Rk= solid phase  s  and species  k ⎭

⎪
⎬
⎪
⎫

ℜk 1 1 ε–
ε

-----------χk+=

Dk
f sfεDdk

f βT q f+( )I βL βT–( )qf qf⊗

q f
----------------+=

⎭
⎪
⎪
⎬
⎪
⎪
⎫

For depth-integrated 2D horizontal formulations of
the basic equations (1-18) and (1-19) the following
specific multi-species transport equations in confined
and unconfined aquifers result:
where  denotes the aquifer thickness (cf. FEFLOW’s Reference Manual5).

(1-20)

(1-21)

and

(1-22)

t∂
∂ εℜkCk

f
( ) ∇ Dk

f
∇Ck

f⋅( ) ∇ qfCk
f( ) Q k–⋅+⋅– BRk= fluid phase  f  and species  k   

t∂
∂ εsBCk

s( ) Q k
s

– BRk= solid phase  s  and species  k ⎭
⎪
⎬
⎪
⎫)

)

ℜk B 1 1 ε–
ε

-----------χk+⎝ ⎠
⎛ ⎞=

Dk
f

εBDdk

f βT q f+( )I βL βT–( )qf qf⊗

q f
----------------+=

⎭
⎪
⎪
⎬
⎪
⎪
⎫

qf Bqf=

Q k BQk=

Q k
s

BQk
s= ⎭

⎪
⎪
⎬
⎪
⎪
⎫

)
)

B



NKO=qÜÉçêó
NKOKP oÉ~Åíáçå=ê~íÉë=oâ

For a given number of irreversible reactions
 the reaction rate  for a species  can

be expressed in the following general form4,8,14

(1-23)

where

= number of reactions;
= rate of reaction associated with the type of

reaction r;
= stoichiometric number of species k and

reaction r.

Reactive systems can be broadly classified into simple
and complex kinetic systems. The former consists of
unimolecular and bimolecular reactions while the latter
encompasses opposing, concurrent, and consecutive
reactions. According to the mechanism of a given reac-
tion, the functional form of  can be very complicated.

A typical constitutive representation of  has a
functional

(1-24)

which can be developed by a polynomial expression of
low order in terms of concentrations  for simple
kinetic systems or more complex rate expressions of
higher order, cf. Fig. 1.1. We can distinguish the fol-
lowing classes of rate expressions.

r 1 … Nr, ,= Rk k

Rk νkrrr
r 1=

Nr

∑= k 1 … N, ,=( )

Nr
rr

νkr

rr

rr

rr rr C1
α … CN

α sf ε, , , ,( )= α f  or  s=

Ck
α

NKOKPKN aÉÖê~Ç~íáçå=íóéÉ=âáåÉíáÅë

For degradation type kinetics the rate  can be
developed in a polynomial representation of low order,
viz.,

(1-25)

where  is a rate constant and  corresponds to
an exponent of species m. For such a type the reaction
rate  (1-23) can be written in the general form

 (1-26)

where  ( ) are bulk rate constants that
can be dependent on  and .

rr

rr Brm Cm
α( )

m 1=

N

∑
nm

= α f  or  s=

Brm nm 0≥

Rk

Rk κm Cm
α( )

nm

m 1=

N

∑= α f  or  s=

 κ1 C1
α( )

n1
κ2 C2

α( )
n2

…+  κN CN
α( )

nN
+ +=

κm m 1 … N, ,=
ε sf

Figure 1.1  Variation of reaction rate with concentration.

re
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tio
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1st order degradation type
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The Arrhenius type kinetics are expressed by a
polynomial representation of higher order for the rate

,

(1-27)

introducing a number of rate constants .
Accordingly, we find for the reaction rate  (1-23) the
following expression

(1-28)

where  ( ) are bulk rate constants that
can be dependent on  and . For the species expo-
nents  is assumed.

NKOKPKP jçåçÇ=íóéÉ=âáåÉíáÅë

Monod type kinetics describe more complex bio-
chemical reaction systems. Monod was the first to rec-
ognize that the growth rate of a microbial population is
restricted by the concentration of the growth-limiting
substrate. Monod established that the form of the rela-
tionship was analogous to the Michaelis-Menten

rr

rr Brm
1 Cm

α( )
m 1=

N

∑
nm

Brm
2 Cm

α( )
m n,

N

∑
nm

Cn
β( )

nn
…

Brm
N Cm

α( )
nm

m 1=

N

∏

+ +

+

=

Brm
1 … Brm

N, ,
Rk

Rk κ1 C1
α( )

n1
κ2 C1

α( )
n1

C2
α( )

n2
…

+  κN Cm
α( )

nm

m 1=

N

∏

+ +=

α f  or  s=

κm m 1 … N, ,=
ε sf

nm 0≥
s

enzyme kinetics equation8. Its mathematical represen-
tation can be written as

(1-29)

where  are rate constants. In (1-29)
 represents the concentration of the growth-limiting

substrate. The term  is the maximum specific
growth rate and the term  denotes the half-satura-
tion constant and is defined as the concentration  at
which the microorganisms grow at half the maximum
specific growth rate . The half-saturation constant
may be viewed as a measure of the affinity the microor-
ganisms have for the growth-limiting substrate: (1) the
lower the value of , the greater the capacity to grow
rapidly in an environment with low concentrations of
growth-limiting substrate, and (2) the lower the value
of , the lower the growth-limiting substrate concen-
tration at which the maximum specific growth rate 
is attained.

Using (1-29) with (1-23) the following expression
for the reaction rate  is obtained:

rr Arm Cr
α( )

m 1=

N

∑
nr Brn Cn

α( )
nn

Drn
nn Ern Cn

α( )
nn

+
----------------------------------------

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

n 1=

N°

∏=

Arm Brn Drn Ern, , ,
Cn

α

Brn
Drn

Cn
α

Brn

Drn

Drn
Brn

Rk
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(1-30)

or in general terms

(1-31)

with bulk rate constants  ( )( )( ), which can be dependent on
 and . For the species exponents  is assumed. In (1-31)  is a maximum specific growth rate and 

is a half-saturation constant.

Rk κ1
1 C1

α( )
n1 b11

1 C2
α( )

n2

d11
1 e11

1 C2
α( )

n2
+

--------------------------------------
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

κ2
1 C1

α( )
n1 b21

1 C2
α( )

n2

d21
1 e21

1 C2
α( )

n2
+

--------------------------------------
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞ b22

1 C3
α( )

n3

d22
1 e22

1 C3
α( )

n3
+

--------------------------------------
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

κ3
1 C1

α( )
n1 b31

1 C2
α( )

n2

d31
1 e31

1 C2
α( )

n2
+

--------------------------------------
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞ b32

1 C3
α( )

n3

d32
1 e32

1 C3
α( )

n3
+

--------------------------------------
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞ b33

1 C4
α( )

n4

d33
1 e33

1 C4
α( )

n4
+

--------------------------------------
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

… κN
1 C1

α( )
n1 bNn

1 Cn
α( )

nn

dNn
1 eNn

1 Cn
α( )

nn
+

----------------------------------------
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

κ1
2 C2

α( )
n2 b11

2 C1
α( )

n1

d11
2 e11

2 C1
α( )

n1
+

--------------------------------------
⎝ ⎠
⎜ ⎟
⎜ ⎟
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κ2
2 C2

α( )
n2 b21

2 C1
α( )

n1

d21
2 e21

2 C1
α( )

n1
+

--------------------------------------
⎝ ⎠
⎜ ⎟
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⎛ ⎞ b22

2 C3
α( )

n3

d22
2 e22

2 C3
α( )

n3
+

--------------------------------------
⎝ ⎠
⎜ ⎟
⎜ ⎟
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κ3
2 C2

α( )
n2 b31

2 C1
α( )

n1

d31
2 e31

2 C1
α( )

n1
+

--------------------------------------
⎝ ⎠
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n3

d32
2 e32
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n3
+

--------------------------------------
⎝ ⎠
⎜ ⎟
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2 C4
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n4
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2 e33
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+
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2 C2
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n2 bNn

2 Cn
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dNn
2 eNn
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nn
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----------------------------------------
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⎛ ⎞

…

κ1
Nr CNr
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nNr b11

Nr C1
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n1
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⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞
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nNr b21

Nr C1
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n1
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Let us consider the case when irreversible and
reversible reactions occur together. For instance, spe-
cies are dissolved in the fluid phase f and undergo a
decay reaction. At the same time, these species may be
adsorbed at the solid phase s in equilibrium reactions.
As exemplified for a reactive eight-species system with
a degradation-type kinetics we can write

(1-32)

Accordingly, the following balance equations result for
the mobile species k of the fluid phase f

(1-33a)

and for the immobile species m associated with the
solid phase s

(1-33b)

where  are decay rate constants. Using the adsorp-
tion isotherms (1-13) with

(1-34)
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and assuming that the decay rate constants  are iden-
tical for the fluid and solid phases, the balance equa-
tions (1-33a) and (1-33b) can be simply added. This
yields the following overall species mass balance equa-
tion

(1-35a)

with the reaction rates of a degradation type

(1-35b)

where  denotes the retardation factor defined by (1-
16).

Similar to (1-35b), rate expressions can be derived
for more complex parallel reaction kinetics when all or
only part of the species undergo a reversible equilib-
rium reaction (adsorption isotherms). Here, the corre-
sponding species of the solid phase are substituted via
the adsorption isotherms (1-13) and the balance equa-
tions for the fluid and solid species are added, resulting
in modified rate expressions  that incorporate the
retardation factor .
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FEFLOW uses the finite-element method to solve

the final mass balance equations (1-18) of species k in
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the fluid f or solid phase s. It ends up with the following
matrix system:

(1-36a)

or

(1-36b)

where  ( ) are the nonlinear
storage matrices including retardation effects, 
( ) are the ’conductance’ matrices encom-
passing advection and dispersion effects, and

 ( ) are the chemical rate vec-
tors, which represent nonlinear dependencies on the
total concentration vector 
according to the considered reaction kinetics. Further-
more, we note that there is no conductance  for a
species k belonging to a solid phase s.

The matrix system (1-36a) can be highly nonlinear
mainly due to the dependence of the reaction rate  on
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C C1 C2 C3 … CN, , , ,{ }=

Kk 0≡

R

 so that an efficient numerical solution strategy is
required here. One possibility would be the solution of
the coupled matrix system (1-36a) in a direct and
simultaneous manner. Although mathematically rigor-
ous, practical implementation of that approach has
been limited and is not generally applicable to large,
geometrically complex and multidimensional problems
because of the significant memory and/or computa-
tional burden. The size of the coefficient matrices 
and  in the discretized system (1-36a) grows as a
product of the number of nodes NP and the number of
species N. In general, the direct approach involves
solving a  system of nonlinear equations at each
time step. Furthermore, the system for a simultaneous
solution can be ill-conditioned due to the significantly
different scales of the processes involved. Alterna-
tively, in order to reduce the computational require-
ments, a decoupled (or split-operator) solution strategy
is preferred, in which the species equations are solved
sequentially by using efficient iteration techniques.
Kanney et al.13 discuss different strategies of such split-
operator approaches. Among a variety of split-operator
techniques the sequential iterative approach (SIA) have
proven superior and powerful. In FEFLOW, we prefer
an adaptive error-controlled SIA strategy which is
based on an efficient predictor-corrector time-stepping
technique. In contrast to a common SIA technique the
transport equations with the reaction terms are solved
in an adaptive full time interval using predictor solu-
tions to linearize the nonlinear reaction terms. The
overall iteration control is fully embedded in a time-
marching strategy via a sophisticated error-based time-
step adaptation.

C

S
K

NP N×
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The predictor-corrector solution strategy with auto-
matically adapted time stepping has been shown very
cost-efficient and robust for classes of nonlinear sys-
tems such as variable density9 and/or variably
saturated6 problems. We also apply this technique for
solving the present chemically reactive systems.

We rewrite the composed matrix system in separate
matrix systems for each species k as follows

(1-37)

or

(1-38)

with .

The nonlinear matrix systems (1-37) are discretized in
time t by using implicit time-stepping techniques. Con-
sidering  within the time interval ,
where the subscript n denotes the time plane and  is
a variable time step length, the implicit approximation
of (1-37) yields
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(1-39)

where n+1 identifies the new time solution and
 is a weighting factor used for the trapezoid

rule (TR) of second-order accuracy and the backward
Euler (BE) schemes of first-order accuracy in time t.

The system is nonlinear due to the dependence on
 and can be appropriately lin-

earized by using the following adaptive predictor-cor-
rector time-stepping strategy:

(Step 0 - Initialization) Computation of the initial
acceleration vectors  for  (once per k-species
equation) 

(1-40)

and guessing of an initial time step . The initial sys-
tems (1-40) are solved with the initial concentration
vector .

(Step 1 - Predictor solutions) Perform explicit predic-
tor solutions for all species k by using the Adams-
Bashforth (AB) or the forward Euler (FE) algorithm,
respectively:

(1-41)
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(Step 2 - Corrector solutions) Do corrector solution
via the TR or BE schemes (1-39) by applying the pre-
dictor solution

from
(1-41) to linearize the species equations as

(1-42)

(Step 3 - Updated time derivatives) Update the new
time-derivative vectors by inverting the TR and BE
schemes, respectively:

(1-43)

(Step 4 - Error estimation) Compute the local trunca-
tion error for the AB/TR or FE/BE scheme, respec-
tively:

(1-44)
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(Step 5 - Prediction of new time step) Predict the
potential new k-specific time-step lengths from the
error estimates (1-44) for each species k:

(1-45)

where  is 3 for the AB/TR and 2 for the FE/BE
scheme,  is a user-specified error tolerance
(  is typical), and  is a norm to be
chosen as the weighted RMS norm or, alternatively, the
maximum norm, respectively:

(1-46)

where  is the maximum concentration of species k
at the time plane n+1, NP is the total number of spa-
tially discretized points (nodes), and  denotes the
error of species equations k at the node i

.

(Step 6 - Tactic of adaptive time stepping and error
control) The following criteria are used to monitor the
progress of the nonlinear solution:

1. If 

(1-47a)
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the solution  for the species equation k is accurate
within the error bound defined by  and the increase of
the time step is always accepted.

2. If

(1-47b)

where  is typically 0.85, the kth solution  is
accepted but the time step is not changed, i.e.,

.

3. If

(1-47c)

the solution  cannot be accepted within the
required error tolerance  and has to be rejected. The
proposed new time step size (1-45) has to be reduced
according to

(1-47d)

and the solution is repeated for the time plane n+1 with
.

4. If the criteria (1-47a) and (1-47b) are satisfied by all
species equations and the solutions  can be
accepted for all species k within the required error tol-
erance , the new time step is determined from the
minimum of the k-specific time step lengths, viz.,
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(1-47e)

It is important to note that the error tolerance  is
the only user-specified parameter to control the entire
nonlinear and transient solution process. The starting-
up phase is still influenced by the initial time step 
which should be kept small. In practice, two further
constraints for the time-step size have shown to be use-
ful. Firstly, the time step should not exceed a maximum
measure, i.e., . Secondly, the rate for
changing the time-step size  can also
be limited, e.g.,  (say, 2 or 3).

The predictor-corrector strategy fully monitors the
nonlinear and transient solution process via the time
truncation error estimation in which the size of the time
step is cheaply and automatically varied in accordance
with the overall accuracy requirements. The time step
is increased whenever possible and decreased only
when necessary. It is evident to note that by monitoring
the temporal accuracy requirements, at the same time
the solution strategy provides an efficient control of the
nonlinearities of the species transport equation system
via the predictor solutions. Due to the power of the pre-
dictor-corrector strategy any additional iterative feed-
back within the adapted time steps can be avoided.
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Figure 1.2  FEFLOW’s Problem Classifier dialog with selected multi-species mass transport, and Chemical
Species List Editor shown for 7 species.

Set multi-species option 

Input number of species 

Open species list editor for phase definition and naming 

Species IDs automatically countered 

Phase definition: fluid or solid 

Naming of species 

Set MASS (or THERMOHALINE for non-isothermal) transport 
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In FEFLOW’s Problem Editor the Problem Classi-
fier dialog allows the introduction of multi-species
mass transport as shown in Fig. 1.2. This is possible for
the problem classes MASS or THERMOHALINE
TRANSPORT, both under saturated or variably satu-
rated conditions. The problem class THERMOHA-
LINE can be used to define a nonisothermal (thermally
coupled) multi-species transport problem.

In the dialog the number of species N must be set.
This is an arbitrary positive integer (practically, up to a
maximum of 10,000 species is possible). The default
option (N = 1) is single-species transport. Multi-species
transport is considered for a number N greater than
unity. In this case the Species List Editor (see Fig. 1.2)
can be opened to name the species and to define the
phase association. At the same time the species list edi-
tor automatically introduces the so-called species IDs

, which are used to identify the selected
species. (Note that the species ID can be considered as
the species indicator  used in the above
theoretical developments). Furthermore, a species con-
centration  can be associated either with a fluid
phase  or with the solid phase , which is
related to the governing phase-specific mass transport
equations (1-18). In the mobile fluid phase f the species
are dissolved and subject to dispersion and advection,
while species in the immobile solid phase s have no dis-
persion and advection.

ID 1 … N, ,=( )

k 1 … N, ,=

Ck ID=
α

α f=( ) α s=( )
s

NKQKO péÉÅáÉë=ëÉäÉÅíçê
If multi-species transport is defined a Species Selec-

tor (Fig. 1.3) appears in proper contexts of data input,
evaluation and drawing of data and results. It displays
the selected species ID (with the phase association and
the name) which applies to all input, evaluation, graph-
ical output and export. The selector is used to switch
between the different species IDs.

The species selector automatically appears for ini-
tial data, boundary data and material data of multi-spe-
cies mass transport. All input applies to the species ID
currently shown by the selector. In the problem editor
there are also additional options to copy the problem
data for different species IDs (Fig. 1.4).

Figure 1.3  FEFLOW’s species selector is used to browse
through all defined species.

Figure 1.4  Copy of input data for different species.
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If the selector is applied a redraw of the underlying
data (e.g., boundary conditions, material data, plotted
results, diagram curves) is immediately performed.

NKQKP jìäíáJëéÉÅáÉë=ã~íÉêá~ä=Ç~í~
Entering the mass-material menu in FEFLOW’s

problem editor the material data are related to the
selected species ID. If the selected species is associated
with a solid phase s sorption parameter, molecular dif-
fusion, longitudinal and transverse dispersivities are
irrelevant and input is disabled for those parameters.
Moreover, for the solid phase the solid volume fraction

 is to be entered instead of porosity , which
must be entered for species associated with the fluid
phase f, cf. Fig. 1.5.

A new button identified by the  symbol launches
the Reaction Kinetics Editor, where the reaction rates

 are edited (as thoroughly described in Chapter 1.5).
A Rate parameter (see Fig. 1.5) appearing in the mate-
rial menu can be used in the Reaction Kinetics Editor
to refer to distributed (or constant) rate coefficients.

εs 1 ε–= ε

Σ

Rk
Figure 1.5  Mass-material menus for species of a fluid phase f (left) and a solid phase s (right).

solid volume fraction εs

irrelevant for solid phase 

reaction kinetics editor

rate parameter to be used
in the reaction kinetics editor
as green variables Ratek

appearing as additional
green variable SolidFrack 

porosity ε
appearing as additional
green variable Porosityk 

reaction kinetics editor

rate parameter to be used
in the reaction kinetics editor
as green variables Ratek

sorption coefficient κ (or k1, b1)
appearing as additional
green variable Sorptionk 
NKR oÉ~Åíáçå=háåÉíáÅë=bÇáíçê

FEFLOW provides a powerful graphical tool for
editing the rate expression  (1-23). Here, there areRk
two principal classes of reaction expressions that can
be applied. First, the kinetics editor includes precom-
piled expressions for which no additional code inter-
pretation is needed. The provided formulae refer to
cbcilt=ö=ON
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simplified expressions of the degradation (1-26),
Arrhenius (1-28) and Monod (1-31) reaction types for a
limited number of reaction terms.

Second (at present available on Windows PC and
LINUX platforms), FEFLOW’s FEMATHED kinetics
editor enables the input of user-defined reaction-rate
expressions which the user can freely edit in an interac-
tive, graphics-based and flexible manner without any
limitations on the algebraic structure of the rate formu-
lae. The user-defined kinetics provides important addi-
tional features not available in the precompiled
formulae, such as

• freely editable algebraic formulae of arbitrary
structure and complexity;

• combination with conditional if-else statements;
• use of porosity (or solid-volume fraction) parame-

ters in the rate expressions;
• use of the saturation variable for unsaturated prob-

lems in the rate expressions;
• use of the temperature variable for nonisothermal

multi-species transport in the rate expressions.

Rate expressions stemming from user-defined kinetics
requires a code interpreter at run time. FEFLOW pro-
vides such a interpreter with a high computational
speed. Practically, when comparing precompiled and
user-defined rate expressions for a common number of
reaction terms of the formulae, comparable simulation
times have been found. Consequently, the user-defined
kinetics should be the preferred option providing a
maximum of flexibility at a high computational speed.
s
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Pushing the  button in the material editor (Fig.
1.5) opens the Reaction Kinetics Editor with the default
option of a degradation-type kinetics as illustrated in
Fig. 1.6.

In mathematical terms it represents a reduced variant of
the general rate expression (1-26) in the following
form:

Σ

Figure 1.6  FEFLOW’s Reaction Kinetics Editor for pre-
compiled rate expression of degradation-type kinetics.
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(1-48)

where  are rate constants,  are rate coefficients,
 are the concentrations of species m associated with

phase , and  are exponents of the concentra-
tions, where  is commonly assumed. The rate
expression is related to the selected species ID = k (in
the example of Fig. 1.6 the ID is 2 and the rate expres-
sion is formulated for ). The indicator k is the ID set
by the species selector (cf. Fig. 1.3). In the symbolism
of the formula five different types appear:

• green variables (Rate1, Rate2, .., RateN): These
rate coefficients are related to the mass material
distributions prescribed in the material editor (see
Fig. 1.5) for each species ID. They can be treated
also as spatially variable parameters.

• blue variables (C1, C2, ..., CN): These are the
internal system variables of concentrations of the
related species.

• black coefficients and exponents (k1, k2, ..., kN;
n1, n2, ..., nN): These are editable variables to
assign rate factor and rate signs as well as concen-
tration exponents, respectively. They are input in
the dialog.

• red indices : They are selectable in
the dialog and relate the concentration and accom-
panying variables to a species ID.

The precompiled degradation formula is prepared
for eight terms. Commonly, this is sufficient for a wide
class of problems (e.g. typical in sequential decay
chain reactions). Reaction terms can be suppressed by
specifying zero rate factors in the dialog ( ). If
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m 1 … N, ,( )∈

ki Ratem
Cm

α

α f s,( )∈ ni
ni 0≥

R2

m 1 … N, ,( )∈

ki 0=
more than eight terms are needed the user-defined reac-
tion kinetics (see Section 1.5.2 below) must be used.

NKRKNKO ^êêÜÉåáìë=íóéÉ=âáåÉíáÅë

In contrast to degradation-type kinetics we classify
a reaction as an Arrhenius type if products of different
species concentration are to be considered. The pre-
compiled rate expression provides for a maximum of
four reaction terms as shown in Fig. 1.7. The meaning
of the colored variables and coefficients is identical to
that described in Section 1.5.1.1.

Figure 1.7  FEFLOW’s Reaction Kinetics Editor for pre-
compiled rate expression of Arrhenius-type kinetics.
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The used Arrhenius reaction type represents a reduced
variant of the general form of (1-28) according to:

(1-49)

where  are rate constants,  are rate coefficients,
 are the concentrations of species m associated with

phase , and  are exponents of the concentra-
tions, where  is commonly assumed.

NKRKNKP jçåçÇ=íóéÉ=âáåÉíáÅë

For the precompiled Monod type kinetics a reduced
variant of the general rate law (1-31) has been imple-
mented based on the following expression

(1-50)

where  are rate constants,  are rate
coefficients,  are the concentrations of species m
associated with phase , and  are exponents
of the concentrations, where  is commonly
assumed.

This specific Monod reaction formula (1-50) can be
edited by the Reaction Kinetics Editor as shown in Fig.
1.8. It consists of three terms for which the colored
variables, coefficients and species indicators can be set.
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If the number of terms is not sufficient or the structure
of the provided algebraic formula is unsuitable the user
should turn to user-defined reaction kinetics (see Sec-
tion 1.5.2 below), where more flexibility in the formu-
lation of the Monod type expression is available.

NKRKO rëÉêJÇÉÑáåÉÇ= ê~íÉ= ÉñéêÉëëáçåëW
cbj^qeba=ÉÇáíçê

User-defined type kinetics are accessed via the
powerful FEMATHED graphical formula editor that is
used to freely design rate expressions and algebraic

Figure 1.8  FEFLOW’s Reaction Kinetics Editor for pre-
compiled rate expression of Monod-type kinetics.
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relationships for reactions. It can fully replace the pre-
compiled formulae of Section 1.5.1. Moreover, reac-
tion expressions different from the precompiled types
and more complex formulae become easy to formulate
and apply.

The FEMATHED user-defined kinetics editor
appears as the dialog shown in Fig. 1.9. Variables and
coefficients are identified by different colors:

• green variables (Rate1, Rate2, .., RateN; Porosity1,
Porosity2, ..., PorosityN or SolidFrac1, SolidFrac2,
..., SolidFracN; and Sorption1, Sorption2, ..., Sorp-
tionN): They represent rate coefficients, values of
porosity (or solid fraction for solid phase species),
and sorption coefficients (  for Henry,  for Fre-
undlich, and for Langmuir adsorption iso-
therms) that are related to the mass material data
input in the material editor (see Fig. 1.5) for each
species ID (= k). The green variables can be
selected from a list in the editor or by a direct key
input. They can be spatially variable.

• blue variables (C1, C2, ..., CN and additionally
Saturation for unsaturated problems as well as
Temperature for thermohaline transport): These
are the internal system variables of concentrations
of the related species, the saturation and tempera-
ture, which can be freely used in the formula
design of the rate expression. The blue variables
can be selected from a list in the toolbar of the edi-
tor (Fig. 1.9).

• Other coefficients, constants and exponents can be
arbitrarily introduced in the formulae by using the
editor. Once completely defined they appear in
black color in the formula expression, otherwise

κ k1
b1
variables, coefficients or constants appear in red if
syntactically erroneous or incompletely assigned.

The major elements of FEMATHED are illustrated
in Fig. 1.9. The editor supports standard word-process-
ing shortcuts and key accelerations such as Control-C
for copy, Control-X for cut or Control-V for paste of
expression parts or characters. All input may be entered
by keyboard. For instance, the concentration variable

 for species 3 can be selected from the list of blue
variables available on the toolbar. Alternatively, enter-
ing the key sequence C Down 3 automatically retrieves
and sets the variable. Any number of auxiliary vari-
ables and parentheses can be used to modify the for-
mula. Moreover, if-else statements can be introduced in
the formula (cf. Fig. 1.9). Arithmetic and logical opera-
tions can be used and combined in a practically arbi-
trary manner. The edited rate formulae for the species
are automatically stored in the fem-dataset of the prob-
lem. A separate file-access interface exists directly in
the FEMATHED editor to save and load the formula
expression in XML format. This can be useful to
exchange formulae for different species equations or to
save variants of rate expressions in a separate database.

An additional feature of FEMATHED is the testing
of formulae by activating the built-in code interpreter.
Pressing the right mouse button invokes a context
menu that includes the option Tools for experienced
users. Using this option the edited formula can be
tested by entering numerical values for the blue and
green variables and activating the interpreter (see Fig.
1.10). Note that this option is intended for testing the
built-in interpreter outside a simulation run. During the
problem simulation the blue and green variables are
internally generated when solving the species mass

C3
cbcilt=ö=OR
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transport equations and remain hidden from the user. 

During the start-up phase of a simulation with user-
defined reaction expressions the built-in code inter-
preter performs a number of checks with regard to the
s

symbolical correctness and completeness of the edited
rate formulae. If any check fails the simulation is
rejected, the user is alerted and FEMATHED must be
used to remove the error or conflict in the formulae. 
Figure 1.9  FEFLOW’s Reaction Kinetics Editor FEMATHED with user-defined kinetics.

List of blue variables
(species concentrations,
saturation, temperature)
selectable 

List of green variables
(rate coefficients, porosity)
selectableExpression input/export

as XML string

Arithmetic operations
selectable

Conditional operations
(if-else statements)
selectable

Logical operations
selectable

Editor window scrollable

Example of a rate
using a conditional Monod
type relationship defined
by variable r and a stoichio-
metric yield coefficient Y



NKS=j~ëë=j~íÉêá~ä=a~í~=çÑ=jìäíáJpéÉÅáÉë=qê~åëéçêí
Figure 1.10  FEMATHED editor with testing the built-in
code interpreter.

select specific
option 

activate code
interpreter
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The following tables relate the mass material data
available in FEFLOW in the context of multi-species
transport conditions to the theoretical framework
developed above. The species k corresponds to the ID
shown by the species selector. The material data differ
depending on the phase association of the selected spe-
cies k.
Table 1.1 Material conditions for 3D, vertical or axisymmetric mass transport of 
species k at fluid phase f

Item Symbol Unit Default Equations

Porosity 1 0.3 1-9, 1-18

Henry sorption:

  Sorption coefficient 1 0 1-17

Freundlich sorption:

  Sorption coefficient 0 1-17

  Sorption exponent 1 0 1-17

Langmuir sorption:

ε

κ

b1 mg l⁄( )
1 b2–

b2
cbcilt=ö=OT
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  Sorption coefficient (numerator) 1 0 1-17

  Sorption coefficient (denominator) 0 1-17

Molecular diffusion 1 1-19

Longitudinal dispersivity m 5 1-19

Transverse dispersivity m 0.5 1-19

Rate 0 1-48, 1-49, 1-50

(Reaction kinetics editor)
0 1-23, 1-48, 1-49, 

1-50 and others 

Source(+)/sink(-) 0 1-15, 1-18

In-transfer rate 0 see FEFLOW Refer-
ence Manual5

Out-transfer rate 0 see FEFLOW Refer-
ence Manual5

Table 1.1 Material conditions for 3D, vertical or axisymmetric mass transport of 
species k at fluid phase f (continued)

Item Symbol Unit Default Equations

k1

k2 l mg⁄

Ddk
10 9– m2s 1–

βL

βT

Ratek 10 4– s 1–

Σ Rk gm 3– d 1–

Qk gm 3– d 1–

ΦCk

in
md 1–

ΦCk

out md 1–
s

Table 1.2 Material conditions for 2D horizontal mass transport of species k at 
fluid phase f

Item Symbol Unit Default Equations

Aquifer thickness
(only relevant confined conditions)

B m 1.0 1-22

Porosity 1 0.3 1-9, 1-18

Henry sorption:

  Sorption coefficient 1 0 1-17

Freundlich sorption:

ε

κ
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  Sorption coefficient 0 1-17

  Sorption exponent 1 0 1-17

Langmuir sorption:

  Sorption coefficient (numerator) 1 0 1-17

  Sorption coefficient (denominator) 0 1-17

Molecular diffusion 1 1-19

Longitudinal dispersivity m 5 1-19

Transverse dispersivity m 0.5 1-19

Rate 0 1-48, 1-49, 1-50

(Reaction kinetics editor)
0 1-23, 1-48, 1-49, 

1-50 and others 

Source(+)/sink(-) 0 1-15, 1-18

In-transfer rate a) 0 see FEFLOW Refer-
ence Manual5

Out-transfer rate b) 0 see FEFLOW Refer-
ence Manual5

a) For confined conditions and for unconfined conditions at simultaneous application of integral  boundary conditions of 3rd 
kind the unit for the ’In-transfer rate’ is:   
b) For confined conditions and for unconfined conditions at simultaneous application of integral  boundary conditions of 3rd 
kind the unit for the ’Out-transfer rate’ is:  

Table 1.2 Material conditions for 2D horizontal mass transport of species k at 
fluid phase f (continued)

Item Symbol Unit Default Equations

b1 mg l⁄( )
1 b2–

b2

k1

k2 l mg⁄

Ddk 10 9– m2s 1–

βL

βT

Ratek 10 4– s 1–

Σ Rk gm 3– d 1–

Q k

)

gm 2– d 1–

ΦC
in md 1–

ΦC
out md 1–

m2d 1–

m2d 1–
cbcilt=ö=OV
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Table 1.3 Material conditions for 3D, vertical or axisymmetric mass transport of 
species k at solid phase s

Item Symbol Unit Default Equations

Solid volume fraction 1 0.3 1-9, 1-18

Rate 0 1-48, 1-49, 1-50

(Reaction kinetics editor)
0 1-23, 1-48, 1-49, 

1-50 and others 

Source(+)/sink(-) 0 1-15, 1-18

In-transfer rate 0 see FEFLOW Refer-
ence Manual5

Out-transfer rate 0 see FEFLOW Refer-
ence Manual5

εs

Ratek 10 4– s 1–

Σ Rk gm 3– d 1–

Qk
s

gm 3– d 1–

ΦCk

in md 1–

ΦCk

out
md 1–
Table 1.4 Material conditions for 2D horizontal mass transport of species k at 
solid phase s

Item Symbol Unit Default Equations

Aquifer thickness
(only relevant to confined conditions)

B m 1.0 1-22

Solid volume fraction 1 0.3 1-9, 1-18

Rate 0 1-48, 1-49, 1-50

(Reaction kinetics editor)
0 1-23, 1-48, 1-49, 

1-50 and others 

Source(+)/sink(-) 0 1-15, 1-18

In-transfer rate a) 0 see FEFLOW Refer-
ence Manual5

Out-transfer rate b) 0 see FEFLOW Refer-
ence Manual5

εs

Ratek 10 4– s 1–

Σ Rk gm 3– d 1–

Q k
s)

gm 2– d 1–

ΦC
in

md 1–

ΦC
out

md 1–



NKT=kçíÉ=íç=s~êá~ÄäÉJaÉåëáíó=cäçï=~åÇ=jìäíáJpéÉÅáÉë=qê~åëéçêí
a) For confined conditions and for unconfined conditions at simultaneous application of integral  boundary conditions of 3rd 
kind the unit for the ’In-transfer rate’ is:   
b) For confined conditions and for unconfined conditions at simultaneous application of integral  boundary conditions of 3rd 
kind the unit for the ’Out-transfer rate’ is:  

m2d 1–

m2d 1–
NKT kçíÉ= íç= s~êá~ÄäÉJaÉåëáíó
cäçï= ~åÇ= jìäíáJpéÉÅáÉë
qê~åëéçêí
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The fluid density  is composed of a number of

miscible chemical species k with a partial fluid density
 (mass of species k per unit volume of fluid), so that

(1-51)

holds for the mixture10, where  stands for all species
present in the fluid. Moreover, the fluid density  can
be influenced by the temperature  (e.g., density
decreases when temperature increases) and by the fluid
pressure  (density increases when pressure increases
due to compressibility). In a formal manner,  is to be
regarded as a dependent thermodynamic variable for
which a constitutive relationship, or equation of state
(EOS), holds

(1-52)

The partial fluid density  appears here as species-
related density, which is nothing more than the mass
concentration 

(1-53)
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The EOS (1-52) is developed as follows (cf.1,5,10)

(1-54)

where  is the fluid compressibility, and  and  are
the volumetric species and thermal expansion coeffi-
cient, respectively. If we assume that ,  and  are
constant, the integration of (1-54) immediately leads to
the EOS for the density in the common form1

(1-55)

where suitable reference values appear for the density

 at reference pressure , reference con-

centration  and reference temperature .

The EOS for the fluid density (1-55) is often lin-
early approximated by
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(1-56)

where ,  and  are considered constant1,10. 

NKTKO léíáçå=ëÉííáåÖë
To handle variable-density problems for multi-spe-

cies transport FEFLOW differs two principal options:

• Multiple species-dependent density ratio
• Constant solutal density ratio (default)

which will be explained further below. These options
can be set in the Specific option settings dialog as
shown in Fig. 1.11.

ρf ρ0
f 1 γ pf p0

f–( ) αk
k
∑ Ck

f Ck0
f–( )

β T T0–( )–

+ +=

γ αk β

Figure 1.11  Setting of (a) multiple and (b) con-
stant density ratio.

(a)

(b)
s

NKTKP jìäíáéäÉ= ëéÉÅáÉëJÇÉéÉåÇÉåí
ÇÉåëáíó=ê~íáç

In FEFLOW, the dimensionless fluid density differ-
ence ratio5  is used, which is defined for a multi-spe-
cies problem as

(1-57)

where  is the maximum concentration and  is
the reference concentration of species k. The species-
related maximum and reference concentrations are to
be input in the specific reference dialog as seen in Fig.
1.12. This has to be done for each species k.

With the multiple species-dependent density ratio
 the following relationship for the fluid density

expansion in multi-species applications results and is
implemented in FEFLOW, viz.,

α

αk αk Cks
f Ck0

f–( )=

Cks
f Ck0

f

Figure 1.12  Input of maximum and reference concentra-
tion for selected species k.

αk
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(1-58)

Note that the hydraulic head  is used in (1-58) for
which a specific fluid compressibility  is
given (g = gravitational acceleration).

If the multiple density ratio option is set the
required multiple density ratio  has to be input for
each species k in the flow material menu. The species
selector appears and the multiple density ratio  is
related to the selected species as shown in Fig. 1.13.

NKTKQ `çåëí~åí=ëçäìí~ä=ÇÉåëáíó=ê~íáç
Frequently, it can be assumed that the expansion of

ρf ρ0
f 1 γ hf h0

f–( )
αk

Cks
f Ck0

f–( )
---------------------------- Ck

f Ck0
f–( )

k
∑

β T T0–( )–

+ +=

h
γ γρ0

f g=

αk

αk

Figure 1.13  Input of multiple density ratio 
for selected species k.

αk
the fluid density with respect to a concentration
increase is the same for all species k, so that

(1-59)

where  represents an overall constant solutal density
ratio. In FEFLOW, the constant  is defined as5

(1-60)

with

(1-61)

where  is a constant density factor, often approxi-
mated by a value of 0.7 for water, and  is the overall
maximum concentration given by

(1-62)

where  is the maximum concentration of species
k. In (1-60),  represents an overall reference concen-
tration that corresponds to the reference density . It
may be determined by

(1-63)

Using (1-60) and (1-59) in (1-58), the following
modified relationship for the fluid density expansion
results and is applied in FEFLOW for the constant den-
sity ratio option
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(1-64)

where  represent input parameters to
be set in the material data menu and the reference data
dialog.

NKTKR sáëÅçëáíó= êÉä~íáçåë= Ñçê= ãìäíáJ
ëéÉÅáÉë=íê~åëéçêí=éêçÄäÉãë

Generally, in multi-species transport problems the
constitutive relationship for the dynamic viscosity of
fluid  is developed as a function of the species con-
centration  and the temperature , viz.,

(1-65)

FEFLOW provides in the Specific option settings dia-
log two options to specify the empirical relationship for

 in dependence on the variables  and :

• Standard
• User-defined

as exhibited in Fig. 1.14.

In the standard case (Fig. 1.14a)  is developed as
a function of the overall fluid concentration  and the
temperature  according to

(1-66)

ρf ρ0
f 1 γ hf h0

f–( ) α

Cs
f Co

f–( )
----------------------- Ck

f C0
f–( )

k
∑

β T T0–( )–

+ +=

α Cs
f C0

f γ β T0, , , , ,

μf

Ck
f T

μf μf Ck
f T,( )=

μf Ck
f T

μf

Cf

T

μf μf Cf T,( )=
s

where the overall fluid concentration  is defined as

(1-67)

with summation over all dissolved species k in the fluid
phase. The empirical relationship (1-66) is given in
detail in FEFLOW’s Reference manual5 (cf. Fig. 1.14a)

Alternatively, in the case of a user-defined fluid vis-
cosity the FEMATHED viscosity editor is available
(see Fig. 1.14b) to specify arbitrary formulae for  of
(1-65) in dependence on each species concentrations

 and temperature  without restrictions. For exam-

Cf

Cf Ck
f

k
∑=

Figure 1.14  Setting of (a) standard and (b) user-defined
viscosity relationship.

(a)

(b)

μf

Ck
f T
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ple, the fluid viscosity should be developed for two
species according to

(1-68)

where  are constant coefficients of viscosity
variability for each species, and  is the reference
fluid viscosity at the reference species concentration

. With the FEMATHED viscosity editor such a user-
defined relation can simply input as displayed in Fig.
1.15.
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Sun et al.20 present analytical solutions for one-

μf μ0
f ∂μf

∂Ck
f

--------- Ck
f C0

f–( )
k
∑+=

∂μf ∂Ck
f⁄

μ0
f

C0
f

Figure 1.15  Example of a two-species viscosity relation-
ship by using the FEMATHED viscosity editor.
dimensional (1D) multi-species transport problems
with serial and parallel reaction kinetics. As an exam-
ple, the following reaction network is considered (Fig.
1.16) consisting of five species (N = 5). The species B
has three daughter species C1, C2, C3.

The reaction network of Fig. 1.16 can be decom-
posed into three serial reaction chains: ,

 and . Accordingly, the fol-
lowing system of transport equations is considered:

(1-69)

Figure 1.16  Serial-parallel reaction network by Sun et al.2
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The right-hand sides of (1-69) represent the reaction
rates . In (1-69)  is a constant
dispersion coefficient,  is the one-dimensional coordi-
nate,  is a constant pore velocity, 

are first-order rate constants, and
 are corresponding stoichiometric yields. All species

are diluted chemicals in a mobile fluid phase. The
transport parameters assumed for this problem are
shown in Tab. 1.5. There is no need to specify the
porosity .

The following initial and boundary conditions are
used:

(1-70a)

Table 1.5 Problem parameters used

Parameter Symbol Value

Length of column, m 40.0

Dispersion coefficient, m 10.0

Pore velocity, md-1 0.4

Rate constant of A, d-1 0.2

Rate constant of C1, d-1 0.02

Rate constant of C2, d-1 0.02

Rate constant of C3, d-1 0.02

Stoichiometric yield of 0.5

Stoichiometric yield of 0.3

Stoichiometric yield of 0.2

Stoichiometric yield of 0.1

RA RB RC1
RC2

RC3
, , , , D

x
v kk

k A B C1 C2 C3, , , ,=( )
yk

ε

L

D

v

kA

kC1

kC2

kC3

A B→ yB

B C1→ yC1

B C2→ yC2

B C3→ yC3

Ck x 0,( ) 0= k A B C1 C2 C3, , , ,=( ) x 0≥
s

(1-70b)

NKUKNKO ^å~äóíáÅ~ä=ëçäìíáçå

The equation system (1-69) can be written for spe-
cies k

(1-71)

where  represents the differential operator. Sun et
al.20 introduce the auxiliary variable  as

(1-72)

Substituting (1-72) in (1-71) yields the reactive trans-
port equations in terms of , viz.,

(1-73)

Note that for  the transport equation (1-73) in
terms of the first auxiliary variable is identical to the
original equation (1-71) since . The substituted
equations (1-73) can be easily solved by the basic ana-
lytical formula

(1-74)
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where

(1-75)

and  is the initial condition in terms of the auxiliary
variable and  is a dummy variable.

The solutions of all concentrations  in the real
untransformed domain can be determined by a succes-
sive substitution process using (1-72) in a reverse way

(1-76)

where  is the solution from (1-74).

NKUKNKP kìãÉêáÅ~ä=~å~äóëáë

Using FEFLOW for the above 5-species transport
problem the column is discretized with a spatial incre-
ment of m. Because the infinite bound-
ary conditions in (1-70b) cannot be applied in a
numerical context we extend the column up to 80 m
(instead of L = 40 m) and use a Neumann-type bound-
ary condition at the outlet boundary section as

 (1-77)

Accordingly, the double domain is discretized by 600

ψk
v2

4D2
----------

kk
D
----+=

erfc ξ( ) 1 erf ξ( )– 2
π

------- exp τ2–( ) τd
ξ

∞

∫= =

ako
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Ck

Ck ak
yi 1+ ki
ki kk–
----------------Cj

i j=

k 1–

∏
j 1=

k 1–

∑–= k∀ 2 3 … N, , ,=

ak

Δx 0.133333=

D
∂Ck 2L t,( )

∂x
--------------------------– 0= k A B C1 C2 C3, , , ,=( ) t 0>
quadrilateral bi-linear finite elements. The AB/TR pre-
dictor-corrector adaptive time-marching scheme is
applied, where the RMS error tolerance (1-45) corre-
sponds to . The initial time step is

d.

The reaction kinetics for the present problem is of a
degradation type. We employ both the precompiled rate
expressions and the user-defined rate formulae by
using FEMATHED, where the rates  are specified
simply as follows:

(1-78)

In (1-78) the parameters  represent the reaction
constants  of Tab. 1.5. The used species IDs are
linked to the species names and phases as summarized
in Tab. 1.6.

NKUKNKQ oÉëìäíë

A comparison of the FEFLOW results with the ana-
lytical solutions gives perfect agreements as exhibited
in Fig. 1.17. The FEFLOW simulation takes 72 time
steps of variable length. Comparing simulation perfor-
mance between the FEMATHED-interpreted and the
precompiled formula options for this problem we
found practically the same CPU times. Note that the
precompiled degradation formula always executes
eight terms (cf. Fig. 1.6) while the FEMATHED code
interpreter does not need to consider any extra terms.

δ 10 4–=
Δto 10 3–=

Rk

R1 Rate1 C1⋅–=

R2 0.5 Rate1 C1 Rate2 C2⋅–⋅ ⋅=

R3 0.3 Rate2 C2 Rate3 C3⋅–⋅ ⋅=

R4 0.2 Rate2 C2 Rate4 C4⋅–⋅ ⋅=

R5 0.1 Rate2 C2 Rate5 C5⋅–⋅ ⋅= ⎭
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎫

Ratek
kk
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Figure 1.17  Concentration profiles for the five
species across the column after t = 40 days of
reactive transport: Comparison of the exact (ana-
lytical) solutions with FEFLOW results.
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Sun et al.21 have extended their analytical approach
to 3D problems for homogeneous parameters and
steady-state flow regimes. The solutions are demon-
strated for a four-species transport in a 3D aquifer of

. For the finite-element analysis
the domain is discretized by 440,000 hexahedral tri-lin-
ear elements consisting of 462,825 nodes as shown in
Fig. 1.18.

Table 1.6 Species IDs for Sun et al.’s problem

ID Phase Name

1 fluid

2 fluid

3 fluid

4 fluid

5 fluid

k=( )

A

B

C1

C2

C3

100 m 41 m 25 m××

Figure 1.18  Discretized 3D aquifer used in FEFLOW.
First-order reaction rates for the sequential reaction
kinetics  are given as follows

(1-79)

where  are rate constants, which are
listed together with the remaining parameters in Tab.
1.7. All species are considered mobile in the fluid
phase; porosity  does not play a role.

    Boundary and initial conditions are the same as those

Table 1.7 Problem parameters for the 3D problem

Parameter Symbol Value

Length, m 100.0

Width, m 41.0

Thickness, m 25.0

Longitudinal dispersivity, m 1.5

Transverse dispersivity, m 0.3

Pore velocity, md-1 0.2

Rate constant of C1, d-1 0.05

Rate constant of C2, d-1 0.02

Rate constant of C3, d-1 0.01

Rate constant of C4, d-1 0.005

C1 C2 C3 C4→ → →

R1 k1C1–=

R2 k1C1 k2C2–=

R3 k2C2 k3C3–=

R4 k3C3 k4C4–= ⎭
⎪
⎪
⎬
⎪
⎪
⎫
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k4
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used in the 1D example (Section 1.8.1.1). The obtained
results are shown in Figs. 1.19 and 1.20. The concen-
tration contours reveal differences between the analyti-
cal and numerical solutions. In the finite-element
analysis the aquifer is finite and natural Neumann-type
boundary conditions (zero concentration gradients) are
applied at the outer border faces of the discretized
domain. Unlike, in the analytical solution the aquifer
s

domain is considered semi-infinite. Furthermore, Sun
et al.21 used an alternative dispersion model, where dif-
ferent transverse dispersivities in the horizontal and
vertical directions are applied. In the FEFLOW simula-
tions the isotropic Bear-Scheidegger dispersion model
(1-19) is preferred with only one transverse dispersion
parameter (Tab. 1.7).
C1 C2

C3 C4

Figure 1.19  FEFLOW results of the three-dimensional 0.01 isosurface concentration for the four species C1,
C2, C3 and C4 after t = 400 days.
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C1

C2

C3

C4

analytical solution FEFLOW

0.010.1

Figure 1.20  Comparison of Sun et al.21’s analytical solution (left) with FEFLOW results (right): Concentra-
tion contours of the four species C1, C2, C3 and C4 in the xy-plane at z = 13 m and t = 400 days.
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Fry et al.11 studied rate-limited desorption and first-
order decay on the feasibility of in situ bioremediation
of contaminated groundwater by using analytical solu-
tions. The conceptual model is shown in Fig. 1.21.

A remedial pump-and-treat scheme is considered
assuming conditions of one-dimensional, steady-state
groundwater flow through a homogeneous and isotro-
pic aquifer. The modeled portion of the aquifer is
bounded by injection and extraction wells (see control
volume drawn in Fig. 1.21).

The study concerns a method of restoration of a
contaminated aquifer domain, where organic com-
pounds are degraded by indigenous or introduced
microorganisms. Degradation of the contaminant is
represented by a first-order decay, where the rate of
degradation is a function of the contaminant concentra-
tion in the aqueous (fluid) phase. Desorption is

Figure 1.21  Conceptual model of reacting contaminant
transport in groundwater by Fry et al.11.
s

described using first-order kinetics, where the rate of
mass transfer of contaminant from the solid phase to
the aqueous phase depends on the concentration gradi-
ent between the two phases and a single rate coeffi-
cient. The following 1D two-species transport
equations are considered (written in the present nota-
tion), which is a one-site kinetic model15,25 with linear
kinetic sorption and decay in the aqueous phase:

(1-80)

or

(1-81a)

with

(1-81b)

where

= aqueous concentration (at fluid phase);
= sorbed concentration (at solid phase);
= , hydrodynamic dispersion coefficient;
= , Darcy velocity;
= pore velocity;
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= time;
= distance;
= porosity;
= , solid volume fraction;
= solid density;
= equilibrium distribution coefficient;
= first-order desorption rate constant;
= longitudinal dispersivity;
= first-order decay rate constant;

The aquifer is initially contaminated and concentra-
tions  and  are uniform throughout the control vol-
ume. Furthermore, the sorbed and aqueous phases are
initially in linear equilibrium as described with the dis-
tribution coefficient . These initial conditions are
stated as

(1-82)

where  is the aqueous concentration at ,  is
the sorbed concentration at , and  is the length
of the control volume (Fig. 1.21).

At the control-volume inlet  the contaminant
flux due to advection and dispersion is zero for all
times. At the control-volume exit  the concen-
trations are uniform with distance. Accordingly, the
following boundary conditions hold:

(1-83)

t
x
ε
εs 1 ε–( )
ρs

Kd
α
βL
ϑ

C S

Kd

C x 0,( ) Co= 0 x L≤ ≤

S x 0,( ) So= 0 x L≤ ≤

So ρsKdCo= ⎭
⎪
⎬
⎪
⎫

Co t 0= So
t 0= L

x 0=( )

x L=( )

D∂C
∂x
------- 0 t,( )– qC 0 t,( )+ 0= t 0>

∂C
∂x
------- L t,( ) 0= t 0> ⎭

⎪
⎬
⎪
⎫

A test case is considered for which the used parame-
ters are listed in Tab. 1.8.
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Fry et al.’s two-species bioremediation problem as
stated above is simulated by FEFLOW. The 1D domain
of length m is discretized by 300 quadrilateral
bi-linear finite elements, i.e., the spatial increment is

m. The AB/TR predictor-corrector adap-
tive time marching scheme is applied, where the maxi-
mum error tolerance (1-46) corresponds to .
The initial time step is d. Additionally, a
maximum time step length of 0.5 d and a rate for
changing the time-step size  of 2 have proven useful

Table 1.8 Problem parameters used

Parameter Symbol Value

Length of domain, m 10.0

Longitudinal dispersivity, m 1.0

Darcy velocity, md-1 0.04

Equilibrium distribution coeffi-
cient, cm3g-1

0.68

Solid density, g cm-3 2.67

Porosity 0.4

Solid volume fraction 0.6

Desorption rate constant, d-1 0.01

Decay rate constant, d-1 0.1

L

βL

q

Kd

ρs

ε

εs

α

ϑ

L 10=

Δx 0.03333=

δ 10 4–=
Δto 10 5–=

Ξ
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for the present problem simulation. Due to the bound-
ary conditions (1-83) the divergence form7 of the gov-
erning transport equations has to be used, which allows
the input of the total (advective plus dispersive) mass
flux at a boundary.

The reaction kinetics for the present problem is of a
degradation type. We prefer the FEMATHED input for
the rates (1-81b), which are specified as follows (note
that species ID 1 represents the aqueous species with
concentration  and species ID 2 represents the
sorbed species with concentration ):

(1-84a)

(1-84b)

The parameters in (1-84a) and (1-84b) are related to
the notation used in (1-81b) as follows: ,

, , , , ,
, , and . The species

IDs are linked to the species names and phases as sum-
marized in Tab. 1.9.

Table 1.9 Species IDs for Fry et al.’s problem

ID Phase Name

1 fluid

2 solid

C C1≡
S C2≡

R1 Porosity1 Rate⋅ 1 Rate2 Rb Kd⋅⋅+( ) C1
Rate2 SolidFrac2 C⋅ 2⋅+

⋅–=

Rb SolidFrac2 2.67⋅= Kd 0.68=

R2 SolidFrac2 Rate2 Rs Kd⋅ C⋅ 1 C2–( )⋅ ⋅=
Rs 2.67= Kd 0.68=

R1 Rc≡
R2 Rs≡ Porosity1 ε≡ Rate1 ϑ≡ Rate2 α≡ Rs ρs≡
Rb εsρ

s≡ Kd Kd≡ SolidFrac2 εs≡

k=( )

C

S

s
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The FEFLOW results for the problem are compared
with the analytical solutions which are presented by
Fry et al.11. As shown in Fig. 1.22 very good agreement
with the analytical results is obtained. The FEFLOW
simulation takes 2039 time steps. With respect to the
computational performances we also tested the pre-
compiled formulae for the degradation-type rate
against the preferred FEMATHED formulation. Again
we found the same CPU times in both simulations,
illustrating the power of the FEMATHED code inter-
preter.

NKUKP qïçJëáíÉ= ÉèìáäáÄêáìãLâáåÉíáÅ
ëçêéíáçå= ïáíÜ= ÇÉÖê~Ç~íáçåW
`çãé~êáëçå=íç=pq^kjla=~å~J
äóíáÅ~ä=ëçäìíáçåë

NKUKPKN mêçÄäÉã=Ñçêãìä~íáçå

The two-site sorption concept presumes that sorp-
tion or exchange sites in soils can be classified into two
fractions: one fraction (Type-1) on which sorption is
assumed to be instantaneous, and another fraction
(Type-2) on which sorption is considered to be time-
dependent. The resulting two-site kinetic model inter-
acts with a solid phase composed of such different con-
stituents as soil minerals, organic matter and various
oxides. Studies in transport of pesticides indicate that
the two-site kinetic model may well be suitable25.
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The derivation proceeds in the same fashion as for By using the equilibrium sorption (1-85) the Type-1

Figure 1.22  Aqueous ( , solid lines) and sorbed ( , dashed lines) concentrations versus distance  at times
t = 200 days and t = 1000 days: a) Fry et al.’s11 analytical solution (pore volumes ), b) FEFLOW results.
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the one-site sorption model. We introduce two different
sorbed concentrations  and , where the first is for
Type-1 at equilibrium sites and the second is for Type-2
at kinetic sites. Because Type-1 sites are always at
equilibrium, sorption onto these sites is given by an
adsorption function similar to Eq. (1-13), viz.,

(1-85)

where  is the aqueous concentration at fluid phase, 
is the fraction of exchange sites assumed to be at equi-
librium and  is a sorption function. The kinetic part

 is subjected to a kinetic relationship in a form

(1-86)

S1 S2

S1 fχC=

C f

χ
S2

S2 1 f–( )χC→
concentration  can be eliminated (expressed by )
from the 3-species basic equations and only 2 species
(namely  and ) have to be solved. Assuming a lin-
ear degradation for all species ,  and , as well as
a Henry-type sorption for , we found the following
2-species model equations for a two-site kinetic
sorption22,25 with degradation written in the present
notation:

(1-87a)

with

S1 C

C S2
C S1 S2

S1

εfℜm
∂C
∂t
------- q ∇C⋅ ∇ D ∇C⋅( )⋅–+ Rc=

εs
∂S2
∂t

-------- Rs= ⎭
⎪
⎬
⎪
⎫
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(1-87b)

and8

(1-87c)

where

= aqueous concentration (at fluid phase f);
= Type-1 sorbed concentration (at solid

phase s);
= Type-2 sorbed concentration (at solid

phase s);
= hydrodynamic dispersion;
= , Darcy velocity;
= pore velocity;
= time;
= , fluid volume fraction;
= , solid volume fraction;
= porosity;
= saturation;
= solid density;
= equilibrium distribution coefficient;
= fraction of exchange sites;
= retardation factor;
= first-order kinetic rate coefficient;
= , Henry adsorption coefficient;
= decay coefficient of sorbed species ;
= decay coefficient of sorbed species ;

Rc αεs
1 f–( )

f
---------------κ εsκμs1

εfμf+ + C– αεsS2+=

Rs αεs
1 f–( )

f
---------------κC εs α μs2

+( )S2–=
⎭
⎪
⎪
⎬
⎪
⎪
⎫

ℜm 1 1 ε–
ε

-----------κ+=

κ f ρsKd= ⎭
⎪
⎬
⎪
⎫

C
S1

S2

D
q εfv
v
t
εf sfε
εs 1 ε–( )
ε
sf
ρs

Kd
f
ℜm
α
κ f ρsKd
μs1

S1
μs2

S2
s

= decay coefficient of diluted species ;

Note that the two-site adsorption model (1-87b)
reduces to the one-site fully kinetic adsorption model
comparable to (1-81b) if , where the 
terms in (1-87b) have to be replaced by .

NKUKPKO pí~íÉãÉåí=çÑ=~=Na=íÉëí=Å~ëÉ

We solve the above two-site kinetic sorption equa-
tions for a 1D domain (column) of length , for which
analytical solutions are available18,22,25. To compare to
analytical solutions the following dimensionless
parameters are to be defined:

(1-88)

where  is the constant 1D pore velocity. With
given parameters ,  and  the model parameters

,  and  can be specified as

(1-89)

Note that  is only defined if . Equations (1-87a)
with (1-87b) are solved for an initially solute-free col-

μf C

f 0→ 1 f–( )κ f⁄
1 f–( )ρsKd

L

β
ℜm
ℜ

--------= ℜ 1 1 ε–
ε

-----------⎝ ⎠
⎛ ⎞ κ

f
---+=

ω α 1 β–( )ℜL
v
---= P qL

D
---------=

v v=
ℜ β ω

κ f α

κ εβ ℜ 1–( ) 1 β–( )ε–
1 ε–

---------------------------------------------------=

f κ 1 ε–( )
ℜ 1–( )ε

---------------------=

α ω

1 β–( )ℜ v
L
---

--------------------------=

⎭
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎫

α β 1<
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umn subject to a pulse-type input boundary condition.
The initial and boundary conditions are stated as

(1-90)

and

(1-91)

where  is the input concentration, 
is the dispersion coefficient,  is the
Darcy flux and  is the time duration of the applied
solute pulse.

We consider the 1D column for steady-state flow
( ) and saturated conditions ( ). Further-
more, we assume that all decay coefficients are the
same, i.e., . Accordingly, a dimen-
sionless decay parameter  is defined as

(1-92)

The test case is considered for the dimensionless
parameters as

(1-93)

C x 0,( ) 0= 0 x L≤ ≤
S2 x 0,( ) 0= 0 x L≤ ≤ ⎭

⎬
⎫

D∂C
∂x
------- 0 t,( )– qC 0 t,( )+

qCo 0 t< to≤

0 t to≥⎩
⎨
⎧

=

∂C
∂x
------- L t,( ) 0= t 0>

Co D D βLq= =
q εfv εf v= =

to

q const= εf ε=

μf μs1
μs2

μ= = =
ψ

ψ μL v⁄=

β 0.5=
ℜ 2.5=
ω 0.5=
P 4.7=
ψ 0; 0.1; 0.3; 0.6; 1.0= ⎭

⎪
⎪
⎬
⎪
⎪
⎫

In accordance with (1-93) and in using (1-89) the com-
plete dataset is listed in Tab. 1.10.

NKUKPKP kìãÉêáÅ~ä=~å~äóëáë

The two-site equilibrium/kinetic problem as stated
above is simulated by FEFLOW. The 1D domain of
length m is discretized by 300 quadrilateral bi-
linear finite elements, i.e., the spatial increment is

m. The AB/TR predictor-corrector adap-
tive time marching scheme is applied, where the RMS
error tolerance (1-46) corresponds to . The

Table 1.10 Problem parameters used

Parameter Symbol Value

Length of domain, m 10.0

Pulse duration, d 300

Input concentration, mg l-1 1.0

Longitudinal dispersivity, m 2.128

Pore velocity, md-1 0.1

Darcy velocity, md-1 0.04

Porosity 0.4

Solid volume fraction 0.6

Henry coefficient 0.16667

Fraction of exchange site 0.16667

Kinetic rate coefficient, d-1 0.004

Decay rate coefficients, d-1 0; 0.001; 0.003; 
0.006; 0.01

L

to

Co

βL

v

q

ε

εs

κ

f

α

μ

L 10=

Δx 0.03333=

δ 10 4–=
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initial time step is d. The final simulation
time is 800d. Due to the boundary conditions (1-91) the
divergence form7 of the governing transport equations
has to be used, which allows the input of the total
(advective plus dispersive) mass flux at a boundary.

To model the reaction kinetics we prefer the
FEMATHED input for the rates (1-87b), which are
specified as follows (note that species ID 1 represents
the aqueous species with concentration  and spe-
cies ID 2 represents the sorbed species with concentra-
tion ):

(1-94a)

(1-94b)

The parameters in (1-94a) and (1-94b) are related to
the notation used in (1-87b) as follows: ,

, , , ,
, and . The species IDs are

linked to the species names and phases as summarized
in Tab. 1.11.

Table 1.11 Species IDs for two-site sorption problem

ID Phase Name

1 fluid

2 solid

Δto 10 5–=

C C1≡

S2 C2≡

R1 Rate2 SolidFrac2 g K
SolidFrac2 K Rate1 Porosity1 Rate1⋅+⋅ ⋅+

⋅ ⋅ ⋅(
) C1

Rate2 SolidFrac2 C2
         f

⋅ ⋅+
⋅

–

0.16667     g 1 f–( ) f⁄      K Sorption1

=

= = =

R2 Rate2 SolidFrac2 g K⋅ ⋅ ⋅ C1
SolidFrac2 Rate2 Rate1+( ) C⋅ 2

         f
⋅–

⋅

0.16667     g 1 f–( ) f⁄      K Sorption1

=

= = =

R1 Rc≡
R2 Rs≡ Porosity1 ε≡ Rate1 μ≡ Rate2 α≡
Sorption1 κ≡ SolidFrac2 εs≡

k=( )

C

S2
s

NKUKPKQ oÉëìäíë

The FEFLOW results for the problem are compared
with the analytical solutions which are evaluated by
using the STANMOD package18. We simulate the
breakthrough characteristics for  and  measured at
the effluent boundary at  for different decay
parameters . The plots are related to dimensionless
aqueous and sorbed concentrations  and ,
respectively, defined as

(1-95)

Figure 1.23 reveals a good agreement with the analyti-
cal solutions.

C S2
x L=

ψ
C∗ S2∗

C∗ C
Co
------=

S2∗
S2

1 f–
f

----------κCo

---------------------=

⎭
⎪
⎪
⎬
⎪
⎪
⎫
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Figure 1.23  FEFLOW results versus STANMOD solutions18 for effluent breakthrough history of a) aqueous  and b) sorbed  concentra-
tions for different decay parameters  at , , ,  and d.
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NKVKN fåíêçÇìÅíáçå
In contrast to nonsequential (aerobic) degradation

of chlorinated solvents, sequential dehalogenation is
performed by anaerobic bacteria that cannot work
under aerobic conditions. Both mechanisms can occur
in the same contaminant plume depending on oxygen
and nitrate concentrations. Monitoring the chloride
released during the dehalogenation can be useful to
locate the areas where dehalogenation occurs and to
estimate degradation rates. This example simulation
issues from a benchmark within the MACAOH
(Modélisation de l'atténuation des composés organo-
chlorés dans les aquifères) project of the French Envi-
ronment and Energy Management Agency (ADEME)
with various university and private partners, namely,
BURGEAP, IFARE, IFP, IMFS, and IMFT. The project
focuses on chlorinated solvents, specifically PCE (per-
chloroethylene), TCE (trichloroethylene), DCE (cis-
and trans-1,2-dichloroethylene) and VC (vinyl chlo-
ride). The aim of the benchmark was to evaluate the
state of the art in the numerical simulation of the natu-
cbcilt=ö=QV
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ral degradation of chlorinated solvents in aquifers in
France. The results of this project will be published in
2006.

NKVKO `çåÅÉéíì~ä=éêçÄäÉã
A mixture of PCE and TCE is injected continuously

in an initially uncontaminated 1D domain containing
dissolved oxygen, nitrate, and chloride. The initial aer-
obic conditions do not allow the degradation of PCE by
anaerobic bacteria, but a slow complete mineralization
of TCE is considered. Daughter products of TCE dur-
ing the mineralization (H2O and CO2) are not simu-
lated, except chloride ions. The oxygen concentration
decreases as a consequence of the aerobic bacteria res-
piration. This behavior continues as long as the concen-
tration of oxygen remains above a critical level. The
reactions take place only in the fluid phase. Reaction
and sorption with the solid phase are neglected.

Wiedemeier et al.24 explain that anaerobic bacteria
cannot work at oxygen concentrations greater than 0.5
mg l-1. When no more oxygen remains in water, aero-
bic bacteria use nitrate. After Wiedemeier et al.24,
anaerobic bacteria can start the sequential reductive
dechlorination of chlorinated solvents under nitrate
concentrations smaller than 1 mg l-1.

In the MACAOH benchmark, it was assumed that
the sequential degradation starts in the presence of
nitrate as soon as the oxygen concentration reaches
zero. Thus, once oxygen reaches sufficiently low con-
centration anywhere in the domain, the following
reductive sequential degradation of chlorinated sol-
vents starts
s

(1-96)

The concentration of nitrate is supposed to decrease
independently of other species, as soon as the oxygen
concentration reaches zero, following a simple first-
order degradation law.

NKVKP bèì~íáçåë= çÑ= ã~ëë= íê~åëéçêí
ïáíÜ= ëÉèìÉåíá~ä= ~åÇ= åçåJ
ëÉèìÉåíá~ä=êÉ~Åíáçå

The one-dimensional equation of transport for the
homogeneous reaction of nonretarded parent and
daughter species can be written as

(1-97)

where  denotes porosity,  the parent species (PCE to
DCE),  the daughter product (TCE to VC),  and 
the concentration of species  and ,  the time,  the
Darcy velocity,  the mechanical dispersion
(  with  as the longitudinal dispersivity),

 and  the first order decay constants of
species  and  under aerobic and anaerobic condi-
tions, respectively,  the stoichiometric yield for the
degradation of species  to produce species ,  and

 functions equal to 0 for degradation in aerobic con-
ditions and equal to 1 for degradation in anaerobic con-
ditions.
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Chlorinated solvents
The reaction rates appear on the right-hand sides of (1-
97). Under aerobic conditions, there is no sequential
degradation and the reaction rates  of chlo-
rinated solvents in aerobic conditions simplify to

(1-98)

Under anaerobic conditions, the sequential degrada-
tion from PCE to VC lead to reaction rates 
defined as follows

(1-99)

Except for PCE that has no parent species, all reaction
rates are made of an independent degradation term and
of a production term dependent on the degradation of
the parent species. Note that because FEFLOW can
handle simultaneously homogeneous and heteroge-
neous reactions for the same species, users have to
include the porosity ’manually’ in the definition of the
reaction rates for a homogeneous reaction.

RPCE,TCE,DCE,VC
ae

RPCE
ae 0=

RTCE
ae ε kTCE

ae CTCE( )–=

RDCE
ae 0=

RVC
ae 0= ⎭

⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎫

RPCE,TCE,DCE,VC
anae

RPCE
anae ε kPCE

anaeCPCE( )–=

RTCE
anae ε kTCE

anaeCTCE aPCE,TCEkPCE
anaeCPCE–( )–=

RDCE
anae ε kDCE

anaeCDCE aTCE,DCEkTCE
anaeCTCE–( )–=

RVC
anae ε kVC

anaeCVC aDCE,VCkDCE
anaeCDCE–( )–= ⎭

⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎫

^ÉêçÄáÅJ^å~Éê
Oxygen
Aerobic bacteria do not use oxygen in definite propor-
tions during their respiration. The oxygen consumption
was arbitrarily defined in the benchmark as follows

(1-100)

From the conceptual model, the terms in DCE and VC
are superfluous because they are not present in the sys-
tem at the initial state and because TCE does not
degrade into those compounds in aerobic conditions.
Thus in this example simulation there cannot be DCE
or VC under aerobic conditions and it follows from
(1-100) that 

(1-101)

By definition there is no oxygen in anaerobic condi-
tions, so

(1-102)

Chloride
Chloride is released into the groundwater during the
dehalogenation of chlorinated solvents. The relation 

(1-103)

is assumed under aerobic conditions, i.e., in terms of
reaction rates

(1-104)

∂CO2

∂t
----------- 4.5∂CTCE

∂t
------------- 4∂CDCE

∂t
-------------- 3.5∂CVC

∂t
------------+ +=

RO2

ae 4.5RTCE
ae 4RDCE

ae 3.5RVC
ae+ +=

RO2

anae 0=

∂C
Cl-

∂t
----------- -1.068∂CTCE

∂t
------------- 0.712∂CDCE

∂t
--------------– 0.552∂CVC

∂t
------------–=

R
Cl-
ae -1.068RTCE

ae 0.712RDCE
ae– 0.552RVC

ae–=
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For reductive dechlorination, different dechlorination
kinetics is assumed, viz.,

(1-105)

and

(1-106)

Nitrate
Nitrate is supposed to degrade at a given independent
rate if the oxygen concentration is zero, which leads to
the following reaction rates

(1-107)

NKVKR kìãÉêáÅ~ä=ãçÇÉä
One-dimensional steady flow and transient trans-

port are supposed. The species simulated are PCE,
TCE, DCE, VC, oxygen, nitrate, and chloride. The
aquifer length is 250 m, Darcy velocity of water
0.4 m d-1. For all species, porosity  is 0.4, longitudi-
nal dispersivity  is 1 m, and retardation factor  is
1. Steady Dirichlet transport boundaries of 3 mg l-1 for
PCE, 5 mg l-1 for TCE, 0 mg l-1 for DCE and VC, 10
mg l-1 for oxygen, 20 mg l-1 for nitrate, and 15 mg l-1
for chloride, are applied at . Initial conditions are

∂C
Cl-

∂t
----------- -0.208∂CPCE

∂t
------------- 0.262∂CTCE

∂t
------------- 0.356∂CDCE

∂t
--------------––

0.552∂CVC

∂t
------------–

=

R
Cl-
anae -0.208RPCE

anae 0.262RTCE
anae– 0.356RDCE

anae–

0.552RVC
anae–

=

R
NO3-
ae 0=

R
NO3-
anae ε k

NO3-
anaeC

NO3-( )–=

ε
βL ℜk

x 0=
s

uniform, are equal to the boundary condition for oxy-
gen, nitrate and chloride, and to zero for all chlorinated
solvents. The first order decay rates and stoichiometric
coefficients are given in Tab. 1.12.

FEFLOW’s FEMATHED Reaction Kinetics Editor
allows to easily define complex reaction rates. Particu-
larly useful here is the ’if otherwise’ construct to
switch between aerobic and anaerobic behavior. It
allows the combination of aerobic and anaerobic reac-
tion rates in one composite reaction rate  for each
species k. The reaction rates are entered in FEFLOW as
listed in Tab. 1.13.

Another ’if otherwise’ construct is used to stop the
consumption of oxygen at an arbitrary residual concen-
tration of 0.05 mg l-1. If the oxygen consumption was
not bounded by the user, the oxygen concentration
would continue to decrease and would lead to negative

Table 1.12 First order decay rates and 
stoichiometric coefficients

Species k Unit Unit

PCE 0.03 0 d-1 aimless

TCE 0.09 0.009 d-1 = 0.792 -

DCE 0.009 0.15 d-1 = 0.738 -

VC 0 0.24 d-1 = 0.644 -

oxygen 0 0 d-1 undefined

nitrate 0.1 0 d-1 undefined

chloride 0 0 d-1 undefined

kk
anae kk

ae ak j,

aPCE,TCE

aTCE,DCE

aDCE,VC

Rk
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concentrations. In contrast, the degradation of nitrate
does not need to be bounded because it is a simple first-
^ÉêçÄáÅJ^å~Éê
order reaction that can only lead to positive concentra-
tions.
FEFLOW accepts only one value of first-order decay son why it is sometimes necessary to correct the value

Table 1.13 Reaction rates as defined in FEFLOW

Reaction rate Comment

degradation is supposed 
under aerobic conditions

no VC decay in anaerobic 
conditions  but 

decay supposed under aero-
bic conditions

decay of nitrate starts under 
anaerobic conditions

neither VC nor DCE under      
aerobic conditions

Rk

RPCE
ε kPCE

anaeCPCE( )    if    CO2
0.1<–

0                        otherwise⎩
⎨
⎧

= kPCE
ae 0=
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⎨
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= kVC
anae 0=( )
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ε 4.5
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----------– CTCE 4.0 0.15
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-------------kDCE

anaeCDCE 3.5kVC
ae CVC––⎝ ⎠
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0.05>

0                                         otherwise⎩
⎪
⎨
⎪
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=

R
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ε k
NO3-
anaeC

NO3-( )     if    CO2
0.1<–

0                         otherwise⎩
⎨
⎧

=

R
Cl-

ε 0.208kPCE
anaeCPCE 0.262kTCE

anaeCTCE 0.356kDCE
anaeCDCE+ +( )    if    CO2

0.1<

ε 1.068kTCE
ae CTCE( )              otherwise⎩

⎨
⎧

=

rate for one species, but in this example, the decay rates
differ in aerobic and anaerobic conditions. It is the rea-
of the rate in the Reaction Kinetics Editor to match the
decay rate for the given conditions. The reference
cbcilt=ö=RP
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decay rates are here the rates in anaerobic conditions. It
means for example for TCE that the decay rate has to
be divided by 10 in the kinetics editor for aerobic con-
ditions. VC is the exception. It is necessary to enter the
value  instead of  in the first order
decay rate, to make the decay rate of VC available to
the definition of the oxygen consumption.

NKVKS páãìä~íáçå=êÉëìäíë
The problem was solved by FEFLOW for steady

flow and transient transport for 365 days in a two-
dimensional (pseudo one-dimensional) model as
shown in Fig. 1.24, with an automatic forward Euler/
backward Euler time-integration scheme without
upwind. The maximal time-step increase  is 1.1 and
the maximal time step  is limited at 0.5 days to be
sure that the Courant number does not exceed 0.5. In
order to reproduce as closely as possible the simulation
conditions of other numerical codes (finite differ-
ences), the mesh is built on the basis of linear quadrilat-
eral elements. Models with 250, 500 and 1000
elements were solved.

The computing time for the 250-elements model on
a 1.5 GHz Intel Pentium4 processor with 1.25 GByte
RAM is about 13 min. 

kVC
ae 0≠ kVC

anae 0=

Ξ
Δtmax

Figure 1.24  Pseudo one-dimensional mesh with 250 lin-
ear quadrilateral elements. Vertical exageration 500:1.
Identifier 1 and 2 represent observation points.

 

250 m

Ci(x=0,t) 
s

The computation time is a function of the number of
species simulated, because the transport problem has to
be solved for each species (here N = 7 species) at each
time step. Figure 1.25 shows the evolution of the time
steps during the computation. While the solution pro-
ceeds relatively fast at the beginning, the speed of com-
putation decreases drastically once the sequential
degradation starts. The sudden decrease in time step
length at about 233 days corresponds exactly to the
time at which VC reaches the outlet leading to a strong
concentration gradient at the outlet for this species.

The simulation results of the 250-elements model are
shown in Figs. 1.26, 1.27, and 1.28.

Figure 1.25  Time steps  as a function of computation
time for 250 elements.

Δtn
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Figure 1.26  Concentration fringes for all species k at 150 days. Darcy velocity = 0.4 m d-1, adsorption = 0.
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Figure 1.27  Concentration profiles along the x-axis at 150 days, for (a) oxygen, nitrate, chloride, and (b) chlori-
nated solvents. Darcy velocity = 0.4 m d-1, adsorption = 0.
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Figure 1.28  Concentration profiles along the x-axis at steady state (365 days), for (a) oxygen, nitrate, chloride, and
(b) PCE, TCE, DCE, and VC. Darcy velocity = 0.4 m d-1, adsorption = 0. Dashed lines represent analytical solutions.
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Simulation results (a) show the extent of the aerobic
zone versus the anaerobic zone. At 150 days, steady
state is reached from x = 0 to x = 65 m for all species.
Two separate aerobic zones appear from x = 0 to 65 m
and from x = 165 m to the outlet. Anaerobic conditions
are found between these two zones, allowing the degra-
dation of nitrate and the sequential degradation of PCE
into TCE, DCE and VC. Under aerobic conditions, the
fast increase in chloride is a result of the complete min-
eralization kinetics of TCE. After 365 days, the anaero-
bic zone extends from x = 65 m to the outlet. The
sequential degradation of chlorinated solvents leads to
an accumulation of VC. The analytical solutions are
obtained for each species, for the aerobic domain first,
then for the anaerobic domain, by applying the decou-
pling solution of Sun et al.21 to Bear's one-dimensional
transport and reaction analytical solution. No method
was found to solve the problem analytically in transient
state, because the solution must include a switching
term between aerobic and anaerobic rates of reactions
as a function of the oxygen concentrations, which are
varying in space and in time. On the other hand, steady
state offers by definition a stable space and time limit
between aerobic and anaerobic conditions. Thus, it is
possible to solve first the aerobic domain, and to take
the concentrations calculated at the end of the domain
as boundary conditions for the calculations in the
anaerobic domain. To avoid the development of a solu-
tion for parallel reactions, the contributions of each
chlorinated solvent to the production of chloride under
anaerobic conditions are solved separately and added
to the chloride concentration obtained at steady state at
the end of the aerobic zone. The results given by
FEFLOW for all species are quasi identical to the ana-
lytical solutions. A participant of the benchmark
obtained quasi identical results on PHAST (USGS) and
s

on a self-made code named VisualRFlow. A participant
using RT3D had serious dispersion problems. Another
participant developed his own code and got a much
narrower anaerobic zone. All these codes use finite dif-
ferences. FEFLOW as the only finite-element code
used in this benchmark has proven a versatile and user-
friendly simulation system that allows the definition of
multi-species and multi-reaction transport problems of
arbitrary complexity.
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In this paper, the details for the multi-species trans-
port in FEFLOW are reported. FEFLOW can be used
to simulate any type of reaction kinetics with an arbi-
trary number of mobile or immobile species in 2D and
3D applications. Multi-species transport is also avail-
able for unsaturated problems, variable-density and
nonisothermal problems.

The paper describes the basic theory of the multi-
species transport. Reaction models are formulated for
degradation, Arrhenius and Monod kinetics. The
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numerical approach for solving the resulting nonlinear
equation systems in the present finite-element context
is thoroughly described. FEFLOW provides powerful
adaptive predictor-corrector schemes with fully auto-
matic time marching.

The reaction-kinetics editor FEMATHED repre-
sents a new and powerful formula editor for an interac-
tive and graphical input of the required rate expressions
at any level of complexity. The formulae can be com-
bined with if-else statements. There is no need for an
additional compiling and linking of the kinetics expres-
sions. A sophisticated built-in code interpreter is avail-
able in FEFLOW which has been shown to be as fast as
precompiled formulae. FEFLOW provides precom-
piled rate expressions for degradation, Arrhenius and
Monod kinetics.

To illustrate and benchmark FEFLOW’s multi-spe-
cies transport functionality, a number of reactive trans-
port example problems are posed and solved. The first
example presents reactive chain applications in 1D and
3D, typical for radionuclide decay. The second exam-
ple presents a comprehensive kinetic model for analyz-
ing rate-limited contaminant one-site kinetic sorption
reactions, typical for in-situ bioremediation problems.
Comparisons to analytical solutions reveal very good
agreements with the numerical FEFLOW results. The
third example is focussed on a two-site equilibrium/
kinetic sorption process combined with linear degrada-
tion suitable for pesticide transport. For this type of
problems good agreements with the STANMOD ana-
lytical solutions are shown. The fourth example con-
cerns more complex sequential and non-sequential
chlorinated solvents degradation under variable aero-
bic-anaerobic conditions. This simulation issues from a
benchmark within the MACAOH project of the French
Environment and Energy Management Agency with
some university and private partners.

FEFLOW’s multi-species transport option is useful
for analyzing different and complex chemical reaction
problems in the subsurface. Radionuclide transport and
biochemical processes in natural attenuation of con-
taminants are typical applications. Predictions from the
simulations can be used for screening remediation
alternatives and environmental risks.

kçí~íáçå

Roman letters

variable rate constant;
transformed concentration variable;

1 stoichiometric yield;
aquifer thickness;

variable rate constant;
variable rate constant;

Freundlich sorption coefficient;
1 Freundlich sorption exponent;

concentration;
overall maximum concentration;
nodal concentration vector;
tensor of hydrodynamic dispersion;
depth-integrated dispersion tensor;
coefficient of molecular diffusion;

variable rate constant;
1 error vector;
variable rate constant;

A
a ML 3–

ak j,
B L
B
b
b1 ML 3–( )

1 b2–

b2
C ML 3–

Cs ML 3–

C ML 3–

D L2T 1–

D L3T 1–

Dd L2T 1–

D
d
d
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variable rate constant;
variable rate constant;

gravitational acceleration;
hydraulic head;

1 unit tensor;
nodal conductance matrix;
equilibrium distribution coefficient;
rate constant;

1 Langmuir 1st sorption coefficient;
Langmuir 2nd sorption coefficient;
length;
total number of chemical species;
number of reactants;
number of reactions;

1 concentration exponent;
pressure;
nonreactive production term;
bulk nonreactive production term;
depth-integrated bulk nonreactive
production term;
Darcy velocity vector;
depth-integrated Darcy flux;
bulk rate of chemical reaction;
nodal bulk rate vector;

1 retardation factor;
depth-integrated retardation factor;
rate of reaction;
sorbed concentration;

1 nodal storage matrix;
1 saturation;

temperature;
time;
pore velocity vector;
spatial coordinate;

E
e
g LT 2–

h L
I
K T 1–

Kd L3M 1–

k T 1–

k1
k2 L3M 1–

L L
N
N°
Nr
n
p ML 1– T 2–

Q ML 3– T 1–

Q ML 3– T 1–

Q

)

ML 2– T 1–

q LT 1–

q L2T 1–

R ML 3– T 1–

R ML 3– T 1–

ℜ
ℜ L
r ML 3– T 1–

S ML 3–

S
s
T Θ
t T
v LT 1–

x L
s

1 stoichiometric yield;

Greek letters

solutal expansion coefficient;
desorption rate constant;

1 fluid density difference ratio;
thermal expansion constant;
longitudinal and transverse disper-
sivity, respectively;
fluid compressibility;
specific fluid compressibility;
temporal increment;
spatial increment;

1 error tolerance;
1 porosity, void space;
1 volume fraction of -phase;
1 solid volume fraction;

decay rate constant;
1 Henry sorption coefficient;
variable bulk rate constant of species k;

dynamic viscosity;
density;

1 rate for changing time step size;
1 stoichiometric number;
1 adsorption function;
1 density factor;

Nabla (vector) operator;

Subscripts

phase indicator;
bulk;
fluid phase;

y

α L3M 1–

α T 1–

α
β Θ 1–

βL βT, L

γ M 1– LT2

γ L 1–

Δt T
Δx L
δ
ε
εα α
εs
ϑ T 1–

κ
κk
μ ML 1– T 1–

ρ ML 3–

Ξ
νkr
χ
ω
∇ L 1–

α
b
f
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heterogeneous;
homogeneous;
species index;
species index;
species indicator;
species index;
time plane or species index;
initial value;
reaction;
solid phase;

Superscripts

aerobic;
anaerobic;
phase indicator;
fluid phase;
time plane;
maximum value;
predictor value;
solid phase;

Abbreviations

AB Adams-Bashforth;
AB/TR Adams-Bashforth/trapezoid rule

scheme;
BE backward Euler;
BTEX bezene-toluene-xylene mixture;
DCE cis- and trans-1,2-dichloroethylene;
EOS equation of state:
FE forward Euler;
FE/BE forward Euler/backward Euler

scheme;

het
hom
i
j
k
m
n
o
r
s

ae
anae
α
f
n
max
p
s

ID identifier of species;
LMA law of mass action;
MACAOH Modélisation de l'atténuation des

composés organo-chlorés dans les
aquifères;

PCE perchloroethylene;
RMS root-mean square;
SIA sequential interactive approach;
TCE trichloroethylene;
TR trapezoid rule;
VC vinyl chloride;
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The integration of the PEST package for parameter
estimation (Doherty et al.6) into the FEFLOW
simulator4 was accomplished in FEFLOW's version 4.8
for stationary flow processes. The coupling has been
realized via FEFLOW's interface manager (see
Gründler8) using the method of direct implementation.
The PEST module has access to FEFLOW's address
space and is called within its graphical user interface.
Data exchange is facilitated during run time with call-
back functions. A description of the PEST-FEFLOW
coupling is given in Kaiser11.

In FEFLOW's version 5.2 the range of applicability
of parameter estimation with PEST has been extended
to transient flow problems. The extension required only
minor changes in the PEST graphical user menu for
observations, since the time-dependent observation
curves are treated as power functions, for which
FEFLOW provides a comprehensive data management. 

From a theoretical point of view the analysis of
transient simulation models, which produce predictions
for observable physical quantities, will profit from the
application of concepts and methods of data assimila-
tion. In this analysis technique observed information
(i.e. measured gauge curves of hydraulic heads) is used
to improve the model state (i.e. FEFLOW's material
parameters) and to enhance the predictive power of the
model. Two basic approaches to data assimilation are
known (Bouttier and Courtier1):

• Sequential assimilation, which considers only
observations from the past until the time of analy-
sis. This is the case for models of meteorological
weather forecast or flood forecast models in real-
time applications.

• Retrospective assimilation, where observations
from any conceivable time range can be used for
model calibration and validation. Groundwater
models are typically treated with this approach.

Both approaches can use the observed information
either intermittently or continuously in time. In the
intermittent mode, observations are grouped in time
intervals, which are much smaller than the total simula-
tion time but much larger than the time scales of the
underlying physical processes. Usually, this mode is
O
m~ê~ãÉíÉê=Éëíáã~íáçå=çÑ=íê~åëáÉåí=Ñäçï=éêçÄäÉãë
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technically convenient. In the continuous mode obser-
vations over the whole simulation time of the model
are considered to improve the model state, which is
physically more realistic.

Most subsurface flow models are conveniently
treated with retrospective data assimilation in the con-
tinuous mode. To make use of the PEST algorithm to
minimize the objective function, the model parameters
must be constant in time. The general data assimilation
concept includes time dependent model parameters as
well. However, in this case the Kalman filter technique
should be used for the parameter update. This tech-
nique is mathematically equivalent to the minimization
of the objective function†) (Bouttier and Courtier1).

In the present implementation complete use of the
observed information is made by considering measure-
ments at each observation point  of the model and at
each time step . Measured hydraulic heads  can
be compared with model predictions  by using
the callback function OnTimeStepConstraint()
of the interface manager. This functions ensures, that
the hydraulic head is calculated for the whole finite ele-
ment grid at a prescribed time step irrespectively of the
selected algorithm for time stepping. The vector  con-
tains the time-constant material parameters of
FEFLOW, which are updated in the estimation process.

Now the objective function  can be constructed
with the residual vectors  and the covari-
ance matrix  of the measurement errors

†) called 4D variational assimilation (4D VAR) in Bouttier
and Courtier1.

i
tj oi tj( )

Mi tj p,( )

p

J p( )
oi t( ) Mi t p,( )–

Ri
1–
s

(2-1)

by summing over all  observation points. The vector

(2-2)

contains the recorded measurements of the hydraulic
head for  time steps of the gauge curve pertaining to
observation point . For the vector  an analo-
gous expression is valid. Measurement errors are mod-
eled here in a simplified way. They are treated as
uncorrelated and identical for a given observation
point. After normalization they are represented as
weights of the gauge curves. Note, that for each obser-
vation point an individual sequence of time steps
exists, which may or may not differ from the sequences
of other observation points. The set of FEFLOW mate-
rial parameters  minimizes the objective function

 and can be considered as the optimal parameter
set of the parameter estimation problem. A full descrip-
tion of the mathematical framework of PEST and of the
algorithms to minimize the objective function is given
in Doherty et al.6.

In the following section four simple test examples
are presented to demonstrate the reliability of the
implementation of PEST in FEFLOW for transient
flow problems. The examples cover both confined and
unconfined aquifers with measured and synthetically
generated observation data. In Theis' well problem for
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an unconfined aquifer synthetically generated gauge
curves are used to retrieve the material parameters of a
FEFLOW benchmark problem. The pump tests of
Breyell and Wichita have been conducted in a confined
and an unconfined aquifer. They were analyzed already
by Langguth and Voigt12 with graphical evaluation
methods. Here they have been reanalyzed with PEST in
FEFLOW to compare the results of both approaches.
Finally, a generic floodwave problem has been set up to
assess the results of a parameter estimation, which is
influenced by the consequences of non-uniqueness.

OKO qÉëí=bñ~ãéäÉë
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Theis' problem of the lowering of a water table by a

pumping well is a famous benchmark problem for
numerical algorithms since it possesses an analytical
solution couched in the well-known well function
(Theis14). The complete solution of the governing par-
tial differential equation of second order

(2-3)

for a confined aquifer in a radial symmetric geometry
with the boundary conditions of a constant flux  into
a pumping well of infinitely small radius and a constant
head  at the outer fringe, which is very far away
from the well, has been derived by Theis by exploiting
the analogy to a heat conduction problem (Carslaw and
Jaeger2). The initial condition  is a constant
head of zero at  in the whole plane, except at the
wellbore where . All symbols are

S
T
---∂h

∂t
------ ∂2h

∂r2
--------– 1

r
---∂h

∂r
------– 0=

q

ho

ho 0 r,( )
t 0=

h 0 rb,( ) -0.01 m=
explained in Tab. 2.1.

The time stepping algorithms of the FEFLOW
groundwater simulator have been successfully tested
against the Theis benchmark (Diersch5) on the finite
element grid of Fig. 2.1. Here the same grid with the
same values for the simulation parameters (Tab. 2.1) is
used to test the implementation of the PEST algorithm
for the estimation of parameters in transient flow prob-
lems. The simulation was done with automatically con-
trolled time steps based on the first order (FE/BE)
predictor-corrector techniques.

The coordinates of the observation points on the
FEFLOW grid are given in Tab. 2.2. At these points the
drawdown of the Theis problem has been recorded. For
PEST 15 time steps at each observation point have
been selected with an approximately constant distance
on a logarithmic scale (Fig. 2.3). The PEST estimation
problem has been set up in one zone which comprised
all nodes of the FEFLOW grid. The transmissivity 
and the storage coefficient  have been estimated

Figure 2.1  FEFLOW grid with PEST observation points
for Theis' well problem.
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simultaneously using the initial values of 10-4 m2s-1

and 10-3, respectively. The optimization control param-
eters of PEST have been left at their default values.

Table 2.1 Simulation parameters for Theis' well 
problem

Name Symbol Unit Value

wellbore radius m 0.3048

flow initial m 0

flow initial at wellbore m -0.01

well pumping rate m2d-1 638.75425

fixed head at outer 
boundary

m 0

transmissivity m2s-1

storage coefficient - 0.001

storage compressibility - 0

Table 2.2 Coordinates and distance from the 
pumping well of the observation points for Theis' 

well problem

Obser-
vation 

point no.

Coordinates Distance

1 9.64 0 9.64

2 76.98 12.16 77.93

3 150.28 23.75 152.15

4 223.57 35.33 226.34

rb

h 0 r,( )

h 0 rb,( )

q Q
2πrb
-----------=

h t 304.8 m,( )

T 9.2903 10 4–⋅

S

So

x m[ ] y m[ ] r m[ ]
s

The course of the PEST objective function during
the optimization is shown in Fig. 2.2. With the starting
values for  and  the objective function reaches some
104 for in total 60 time steps from 4 observation points.
After 26 model runs it has been minimized to 
by passing through 10 orders of magnitude. The model
runs no. 27-39 are used by PEST to verify that a mini-
mum of the objective function has been actually
reached.

The estimated values from PEST are 
m2s-1 and  for  and , respectively. For
both parameters PEST produced highly accurate point
estimates which deviate only in the fifth digit from the
true values of Tab. 2.1. The correlation coefficient for

 and  is -0.57 and indicates a relatively weak corre-
lation favouring an effective parameter estimation. Fig-
ure 2.3 exhibits a perfect agreement of 'measured' and

T S

2.5 10 6–⋅

Figure 2.2  Minimization of the PEST objective func-
tion for Theis' well problem.

9.2902 10 4–⋅
1.0002 10 4–⋅ T S

T S
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predicted hydraulic heads at the observation points
which should have been expected with the highly pre-
cise point estimates from PEST. This figure also dem-
onstrates that after some 0.1 d the hydraulic head
becomes constant at all observation points owing to a
simulation system of finite extent. On the other hand,
with growing distance from the pumping well, the
begin of the drawdown is delayed. Therefore, the infor-
mation from observation point 4 alone is not sufficient
to estimate the material parameters, because of the
short drawdown phase. However, with the drawdown
curve of observation point 1 alone a very precise
parameter estimation is always possible.

Figure 2.3  Comparison of measured (symbols) and pre-
dicted (full lines) hydraulic heads for the four observa-
tion points (OP) of Theis' well problem.
OKOKO _êÉóÉää=éìãé=íÉëí
The pump test of the Breyell waterworks (Langguth

and Voigt12) has been evaluated on the basis of the ana-
lytical results of Theis14. The test has been conducted
in a confined aquifer in the Lower Rhine region near
the city of Krefeld. The sequence of geological layers
has been subdivided in an upper unconfined aquifer
which is separated by a layer of very impermeable clay
from the lower unconfined aquifer. During the test the
pumping rate was held constant at 
m3s-1. The drawdown has been observed at three
gauges: gauge 11b at a distance of 7.4 m, gauge 3b at a
distance of 23 m and gauge 6b at a distance of 139.6 m
from the well. The recorded drawdown curves, copied
from Langguth and Voigt12, are given in the Tables 2.3,
2.4 and 2.5. For gauge 11b also the rerise has been
recorded after the pump was stopped at t = 0.1690 d.
The measured values are shown in Tab. 2.6. All mea-
sured curves for the Breyell pump test are depicted in
Fig. 2.5.

Table 2.3 Measured drawdown at gauge 
11b with r = 7.40 m for the Breyell 

pump test

Time
[10-4 d]

Drawdown
 [m]

1.968 0.30

2.431 0.40

3.125 0.50

4.051 0.70

6.134 0.93

Q 2.67 10 2–⋅=
cbcilt=ö=ST
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9.838 1.03

19.44 1.20

25.46 1.28

32.52 1.35

38.19 1.40

52.08 1.47

62.50 1.50

83.33 1.56

125.0 1.64

166.7 1.71

243.1 1.79

347.2 1.86

451.4 1.90

625.0 1.99

960.6 2.07

1690 2.18

Table 2.3 Measured drawdown at gauge 
11b with r = 7.40 m for the Breyell 

pump test (continued)

Time
[10-4 d]

Drawdown
 [m]
s

Table 2.4 Measured drawdown at gauge 
3b with r = 23 m for the Breyell pump 

test

Time
[10-4 d]

Drawdown
 [m]

1.389 0.05

2.083 0.10

2.546 0.15

4.167 0.25

6.250 0.35

9.375 0.45

14.12 0.55

26.16 0.70

40.04 0.80

50.23 0.85

63.54 0.90

79.75 0.95

99.65 1.00

125.0 1.05

164.4 1.11

208.3 1.15

250.0 1.20

319.4 1.25

402.8 1.30

506.9 1.35
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611.1 1.39

937.5 1.48

1342 1.55

1638 1.58

Table 2.5 Measured drawdown at gauge 
6b with r = 139.60 m for the Breyell 

pump test

Time
[10-4 d]

Drawdown
 [m]

27.78 0.14

41.67 0.20

69.44 0.25

90.28 0.29

131.9 0.35

173.6 0.40

236.1 0.45

319.4 0.50

451.4 0.55

Table 2.4 Measured drawdown at gauge 
3b with r = 23 m for the Breyell pump 

test (continued)

Time
[10-4 d]

Drawdown
 [m]
555.6 0.59

746.5 0.65

1001 0.71

1325 0.76

1609 0.80

Table 2.6 Measured rerise at gauge 
11b after the pump stop at                         

t = 0.169 d

Time
[10-4 d]

Drawdown
 [m]

1690 2.18

1709 1.03

1716 0.95

1721 0.90

1727 0.85

1763 0.69

1775 0.65

1806 0.59

1830 0.55

Table 2.5 Measured drawdown at gauge 
6b with r = 139.60 m for the Breyell 

pump test (continued)

Time
[10-4 d]

Drawdown
 [m]
cbcilt=ö=SV
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1873 0.47

1898 0.44

2002 0.35

2072 0.30

2148 0.26

2225 0.23

2396 0.17

2697 0.09

Table 2.6 Measured rerise at gauge 
11b after the pump stop at                         

t = 0.169 d (continued)

Time
[10-4 d]

Drawdown
 [m]
s

Langguth and Voigt12 have given estimates for the
transmissivity  and the storage compressibility 
using graphical evaluation methods of Theis14, and
Cooper and Jacob3, respectively. Theis' method is
based on the graphical matching of a modified well
function with scaled curves of the recorded drawdown.
Cooper and Jacob3 use the exponential behavior of the
drawdown which dominates the process asymptotically
for sufficiently large times. A detailed description of
both methods is not the subject of this paper, it is given
in Langguth and Voigt12. All estimates for  and  are
summarized in Tab. 2.7. The averages over all esti-
mates are m2s-1 for  and  for .
The corresponding maximal relative deviations are
24 % for  and -43 % for . Hence, the storage com-
pressibility  shows a larger variability and can only
be estimated with less precision.

T S

T S

97 10 4–⋅ T 3.7 10 4–⋅ S

T S
S

Table 2.7  Summary of estimates for the transmissivity T and the storage compressibility S of the 
Breyell pump test from Langguth and Voigt12

Gauges used for 
estimation

Transmissivity T
[10-4 m2s-1]

Storage compressibility S
[10-4]

Theis’ superposition method

11b & 3b & 6b together 110 2.4

Time-drawdown-method (Cooper and Jacob3)

6b alone 120 2.1

3b alone 94 4.6

11b alone 89 3.7

Distance-drawdown-method (Cooper and Jacob3)

11b & 3b & 6b together 90 4.8
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Distance-time-drawdown-method (Cooper and Jacob3)

11b & 3b & 6b together 89 4.6

Rerise method (Jacob9)

11b alone 84 n.a.

Table 2.7  Summary of estimates for the transmissivity T and the storage compressibility S of the 
Breyell pump test from Langguth and Voigt12 (continued)

Gauges used for 
estimation

Transmissivity T
[10-4 m2s-1]

Storage compressibility S
[10-4]
In FEFLOW the pump test is modeled in a 2D prob-
lem for confined aquifers on a mesh with 2138 3-noded
triangles. The outline of the mesh consists of a circle
segment with an opening angle of 30° and a radius of
1500 m. The mesh is based on two superelements. The
first superelement covers the zone near the well up to
the radius of 150 m with a higher spatial resolution of
the finite elements. This zone is shown in Fig. 2.4
together with the location of the pumping well and the
three gauges 6b, 3b, and 11b, respectively. The pump-
ing well is modeled with a boundary condition of the
4th kind at the tip of the circle segment. On the outer
boundary a constant head of 0 m is prescribed with a
boundary condition of the 1st kind. The initial head on
all nodes was set to zero.
cbcilt=ö=TN
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With PEST the transmissivity  and the storage of estimation runs has been conducted. Firstly, the

Figure 2.4  Finite element grid near the pumping well at the tip with gauges 11b at r = 7.40 m, 3b at r = 23.00 m and
6b at r = 139.60 m.

T

compressibility  have been estimated simultaneously
in one zone which covered the whole mesh. The initial
values were chosen to be  m2s-1 and ,
respectively. The control parameters for the optimiza-
tion process have been left at their default values. Also
the correlation structure of the two estimated parame-
ters has been calculated. To allow for a direct compari-
son with the results from Langguth and Voigt12 a series

S

10 4– 4 10 4–⋅
drawdown curves were used separately to produce the
parameter estimates. Then the drawdown curves of the
Tables 2.3 to 2.5 have been used together in one esti-
mation run. Also the rerise curve of Tab. 2.6 was used
in a separate run. Finally, a PEST problem has been set
up using all recorded 75 observation points from the
Tables 2.3 to 2.6.
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Table 2.8 contains the point estimates of the six
PEST estimation runs for the transmissivity  and the
storage compressibility . Owing to the narrow width
of the objective function near the minimum, the 95 %
confidence intervals (CI) are mostly around one digit.
Only for the PEST run using gauge 6b alone, which has
the largest distance from the pumping well, the CI were
notably larger. In this run, which needed 73 model calls
to converge, the correlation coefficient between  and

 is almost one. In all other PEST runs the correlation
coefficient is negative and around 30 model calls were
necessary. The absolute value is minimal if the time
steps for the rerise in gauge 11b is included in the esti-
mation. Small correlation coefficients favour the stabil-
ity of the optimization process.

The point estimates for  exhibit a similar variabil-
ity as those from Langguth and Voigt12 in Tab. 2.7. The
estimates of  decrease with decreasing distance from

T
S

T
S

T

T

the pumping well. Langguth and Voigt12 observe the
same trend. The PEST estimates for  differ by some
factor of four whereas in Langguth and Voigt12 the
spread is markedly lower. For both  and  the aver-
ages over all estimates agree well with PEST point esti-
mates of the last line of Tab. 2.8 which were obtained
by using all information of the 75 measured time steps
in one estimation run.

In Fig. 2.5 the curves of the measured and predicted
drawdown are compared. To calculate the predicted
drawdown the point estimates of the last line of Tab.
2.8 were used. The agreement is very good except for
the late phase of the rerise in gauge 11b. During the
pump test the pore structure of the aquifer may change
so that drawdown and rerise cannot be described with
one pair of constant parameter values for  and .
However, in general, with PEST in FEFLOW the
results for the Breyell pump test of Langguth and
Voigt12 have been fully confirmed.

S

T S

T S
Table 2.8  Parameter estimates and statistical information of the PEST estimation runs for the 
Breyell pump test

Gauges used for 
estimation

Transmissivity T
[10-4 m2s-1]

Storage 
compressibility S

[10-4]

Objective 
function 

Number of 
observation 
points 

Correlation 
coefficient

6b alone 117 2.35 14 0.99

3b alone 90.7 5.12 24 -0.78

11b alone 79.8 7.91 21 -0.82

6b & 3b & 11b 88.2 5.03 59 -0.77

11b rerise only 96.8 1.81 17 -0.65

all observation 
points

92.0 4.31 75 -0.55

J
Nobs

J Nobs⁄

1.7 10 3–⋅ 3.0 10 3–⋅

1.9 10 2–⋅ 5.7 10 3–⋅

2.0 10 1–⋅ 2.1 10 2–⋅

3.7 10 1–⋅ 1.0 10 2–⋅

2.5 10 2–⋅ 9.3 10 3–⋅

4.7 10 1–⋅ 9.2 10 3–⋅
cbcilt=ö=TP
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Figure 2.5  Measured (symbols) and predicted (lines) drawdown for the gauges 6b
(diamonds, dotted line), 3b (squares, broken line) and 11b (circles, full line) of the
Breyell pump test.
OKOKP táÅÜáí~=éìãé=íÉëí
The Wichita pump test (Langguth and Voigt12) has

been conducted in an unconfined aquifer. If the
assumption of Dupuit (1863) is valid, the well formulas
of Theis14 can also be applied to aquifers with free
water tables with sufficient accuracy. In practical appli-
cations the maximal drawdown must be small (i.e. < 15
% of the original water-filled height of the aquifer).
However, this is not the case for the Wichita pump test
with a water-filled height of 8.20 m and a maximal
drawdown of 1.80 m at a gauge with a distance of
15.00 m from the pumping well. This value was
recorded after 18 d when the well was operated at an
average pumping rate of m3s-1. Values
for in total six gauges, which have been arranged in
two rows in the north and the south of the pumping
well, are given in Tab. 2.9. Langguth and Voigt12 have
evaluated the pump test with a graphical method of

Q 6.31 10 2–⋅=
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Cooper and Jacob3. To account for the deviation from
Dupuit's assumption they corrected the recorded draw-
down s and used a lower drawdown s' s s2 2B⁄–=
instead, where  denotes the original water-filled
height of the aquifer (Jacob10).

B

For the simulation of the pump test with PEST in pumping well at the tip. The pumping well was mod-

Figure 2.6  Finite element grid for the Wichita pump test with the location of the northern gauges 1-3 and the southern
gauges 4-6.
FEFLOW the same circle segment as for the Breyell
pump test was used with a radius of 1500 m and an
opening angle of 30°. A cut of the grid near the tip with
the location of the six gauges of Tab. 2.9 is shown in
Fig. 2.6. Owing to the radial symmetry the results
depend only on the distance between the gauge and the
eled with a well boundary condition of the 4th kind. At
the outer radius a constant head boundary condition of
0 m has been prescribed. The problem has been set up
in 2d with an unconfined aquifer of -8.20 m bottom ele-
vation. The initial head at all nodes has been set to
zero. The final simulation time was 20 d.
cbcilt=ö=TR



TS=ö=tÜáíÉ=m~éÉêë=J=sçäK=f

OK=m~ê~ãÉíÉê=Éëíáã~íáçå=çÑ=íê~åëáÉåí=Ñäçï=éêçÄäÉãë=ïáíÜ=mbpq=áå=cbcilt
For PEST the six gauges of Tab. 2.9 were used as
observation points. The definition of the time-depen-
dent power functions in FEFLOW requires at least two
time steps, but at the gauges measurements had been
taken only at one time step of 18 d. Therefore, to obtain
six valid power functions to each time step the initial
hydraulic head 0 m at t = 0 was added. Note, that with
this measure no additional information has been intro-
duced into the estimation problem, because the initial
condition is already known without a need to run the
model. It does not depend on changes of the model
parameter. The two material parameters hydraulic con-
ductivity and storage compressibility have been esti-

Table 2.9  Distance to pumping well and 
observed drawdown at t = 18 d for the 6 

gauges of the Wichita pump test

Gauge no.
Distance to 

pumping well
[m]

Drawdown
[m]

northern row

1 15.00 1.80

2 30.70 1.40

3 57.70 1.04

southern row

4 14.95 1.67

5 30.60 1.31

6 57.90 0.97
s

mated simultaneously with the start values of 10-2 ms-1

and 0.2, respectively.

The minimum of the objective function at 0.016
was reached in 7 optimization iterations after 35 model
runs. In Tab. 2.10 the PEST point estimates are com-
pared with the results of the graphical evaluation
method of Langguth and Voigt12. For the hydraulic con-
ductivity the point estimate of PEST lies close to the
estimate of the graphical evaluation method using the
corrected drawdown. The PEST estimate of the storage
compressibility overestimates value from the method
with the corrected drawdown by some ten percent. The
agreement of the estimates for both material parame-
ters from PEST is better with the estimates from the
method using the corrected drawdown. This agreement
justifies the application of this method from hindsight.

The very large 95 % CI of the PEST point estimates
for the storage compressibility indicate a broad mini-
mum of the objective function. The estimated material
parameters show a large negative correlation of almost
-99 %. Both observations indicate that the Wichita
pump test poses a more difficult estimation problem
than the Breyell pump test. 

In Fig. 2.7 the predicted drawdown curves for the
three northern gauges are shown. Those for the south-
ern gauges have been omitted because they are almost
identical within the drawing accuracy. The predicted
curves pass between measured points of the northern
and southern gauges which is an indication of the plau-
sibility of the estimation result.
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Table 2.10 Estimates for the flow parameters of the Wichita pump test

Parameter Graphical evaluation (Langguth and 
Voigt12) PEST in FEFLOW 

(95 % confidence 
intervals in 
brackets)Name Unit with measured 

drawdown
with corrected 

drawdown

conductivity [10-4 ms-1] 23 28 27 (15;47)

storage compressibility [-] 0.44 0.30 0.34 (0.05;24)
Figure 2.7  Measured observation points at t = 18 d for both the northern row (open sym-
bols) and the southern row (full symbols) of gauges, predicted gauge curves only for the
northern row.
cbcilt=ö=TT



TU=ö=tÜáíÉ=m~éÉêë=J=sçäK=f

OK=m~ê~ãÉíÉê=Éëíáã~íáçå=çÑ=íê~åëáÉåí=Ñäçï=éêçÄäÉãë=ïáíÜ=mbpq=áå=cbcilt
OKOKQ cäççÇï~îÉ=éêçÄäÉã
In this example a passing floodwave in a river is

used to estimate the hydraulic properties of the river
bed and the connected aquifer from the response of the
hydraulic head. In FEFLOW a (quasi-) 1D problem has
been set up for an unconfined aquifer of 10 m thickness
on a finite element grid of 100 m length, using 100
4-noded quadrilateral mesh elements as shown in Fig.
s

2.8. At the right edge a time-dependent boundary con-
dition of the 3rd kind has been applied. The floodwave
is modeled by a linear rise of the water table in the river
of 3 m during one day, followed by a subsequent drop
to the initial value on the next day. It is shown in Fig.
2.9. At the left edge a no-flow boundary condition is
applied.
The observed gauge curves at the observation points in various combinations as indicated in Tab. 2.11. Note,

Figure 2.8 Finite element grid for the floodwave problem with the location of the observation points 1 (at 1 m), 2 (at 5
m) and 3 (at 10 m); both shape and position of the time-dependent floodwave boundary condition of the 3rd kind are
indicated.
1 at 1 m, 2 at 5 m and 3 at 10 m distance from the right
edge were calculated with the values of 10-5 ms-1, 5 d-1

and 0.2 for the three material parameters conductivity,
transfer coefficient and storativity. They are shown in
Fig. 2.9 for the first ten days of the simulation. The
actual simulation time was 50 d where for each obser-
vation point 59 time steps have been recorded. Here to
the transfer coefficients for inflow and outflow identi-
cal values were always assigned. The initial head was
set to zero at all nodes. With growing distance from the
river boundary, the maximum of the hydraulic head
appears with a certain delay and the response to the
floodwave becomes broader and weaker.

With PEST the conductivity, the transfer coefficient
and the storativity have been estimated separately and
that the stationary estimation problem (for a confined
aquifer) is ill-posed since only a head boundary is pre-
scribed. Now the conductivity is only defined up to an
integration constant and cannot be estimated (Sun13,
Kaiser11). However, in a transient problem the conduc-
tivity alone can be estimated with a relative error of
one percent (Tab. 2.11). In the estimation run for the
transfer coefficient alone the point estimate exceeds the
true value by more than ten percent. Moreover, the true
value is not included in the 95 % CI of the point esti-
mate. If the conductivity and the transfer coefficient are
estimated together the accuracy of the point estimate
for the conductivity remains unchanged. But for the
transfer coefficient the relative error is reduced to three
percent. When the conductivity and the storativity are
estimated together, both point estimates fall signifi-
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cantly below the true values. When all three material
parameters are estimated the results become even
worse. Obviously, for this combination of parameters
there exists an issue with uniqueness.

Figure 2.9  Hydraulic head curves at the right floodwave
boundary and at the observation points 1, 2 and 3 with dis-
tances of 1 m, 5 m and 10 m.
Figure 2.10  Objective functions for the PEST optimization
runs to estimate the transfer coefficient alone (crosses), the
conductivity alone (triangles), the transfer coefficient and
conductivity together (diamonds), the conductivity and stor-
ativity together (squares), and all three parameters conduc-
tivity, storativity and transfer coefficient together (circles).
cbcilt=ö=TV
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Table 2.11  Input parameter and parameter estimates of PEST in FEFLOW for the floodwave 
problem, 95 % CI in brackets

Conductivity
[10-5 m s-1]

Transfer coefficient
[d-1]

Storativity
[-]

Objective function
[10-3 m2]

input values 1.0 5.0 0.2 n.a.

parameter estimates

conductivity 1.01 (1.00;1.02) 5.0 fixed 0.2 fixed 3.37

transfer coefficient 1.0 fixed 5.61 (5.55;5.66) 0.2 fixed 3.49

conductivity & transfer 
coefficient

1.01 (1.00;1.02) 5.16 (4.89;5.44) 0.2 fixed 3.48

conductivity & storativity 0.754 (0.737;0.771) 5.0 fixed 0.149 (0.147;0.151) 3.51

all 3 parameters 0.481 (0.467;0.496) 2.49 (2.25;2.75) 0.095 (0.092;0.098) 3.63
OKP `çåÅäìÇáåÖ=oÉã~êâë

The ability of the PEST software package to esti-
mate material parameters of FEFLOW flow problems
has been tested with four simple examples. 

For Theis' analytical problem the transmissivity and
the storage coefficient have been estimated with excel-
lent precision. 

In the Breyell pump test for a confined aquifer
recorded drawdown data has been used to determine
the transmissivity and the storage compressibility with
various graphical evaluation methods based on Theis'
analytical solution (Langguth and Voigt12). Owing to
the simplification of the real hydrogeological setting,
which produces unknown systematic errors, the pre-
dicted parameter values show a higher variability. This
variability is reflected in the point estimates from both
the PEST optimization process and the graphical evalu-
ation methods in a similar way. The agreement of the
estimated parameter values is better for the transmis-
sivity than for the storage compressibility. Both estima-
tion methods produced parameter estimates with
sufficient accuracy.
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The Wichita pump test has been conducted in an
unconfined aquifer and has been evaluated by Lang-
guth and Voigt12 using the same approach as for an con-
fined aquifer with and without corrected drawdown.
With PEST it could be shown that the evaluation with
the corrected drawdown produced a more accurate
result. In this example the use of the graphical method
has been pushed to the limit of applicability, whereas
with PEST the Wichita pump test has been evaluated
straight forwardly.

The numerical floodwave problem for the estima-
tion of three material parameters showed that there was
no unique set of parameters to reproduce the measured
curves of the hydraulic head. Although the deviations
from the true parameters are not excessive this example
demonstrated that the estimation of material parame-
ters with PEST does not automatically lead to reliable
results.
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The physical basis, modeling strategies and numeri-
cal solutions of variable-density flow and transport
processes in porous media are thoroughly described
and discussed in the recent review papers by Diersch
and Kolditz2 as well as by Simmons et al.8. These
papers are mainly focused on porous media, however,
fractured media are not of specific concern. Indeed,
there is a lack in studying density effects in fractured
media, particularly in single fractures. Laboratory
experiments in fractured media have not been carried
out. Previous numerical investigations7 were limited to
a regular fracture network consisting of only vertical
and horizontal fractures, embedded in a porous matrix.
Shikaze et al.7 have shown that density plumes in a
fracture network may develop in a highly irregular
fashion and are extremely difficult to predict. But, the
growth of instabilities in single arbitrarily inclined
fractures, located in a low-permeability porous matrix,
remained open to be solved.

Recently, Graf and Therrien5 have presented a
numerical study on density-driven solute transport in
single fractures of arbitrary inclination embedded in a
low-permeable porous matrix. They simulated the
problems by using the control volume finite element
code FRAC3DVS9 for 2D schematizations. Their
results are well documented and appropriate for model
testing. We shall benchmark the 45o-inclined fracture
problem against FEFLOW and the research code
Ground Water (GW) developed by F. Cornaton1.

PKO s~êá~ÄäÉJÇÉåëáíó=cäçï=áå=~
mçêçìë=j~íêáñ=ïáíÜ=~=QRçJ
fåÅäáåÉÇ=cê~ÅíìêÉ

PKOKN pí~íÉãÉåí=çÑ=íÜÉ=Oa=éêçÄäÉã
The single fracture problem is shown in Fig. 3.1.

The inclined fracture is discretized by 1D inclined pipe
fracture elements. The left and right boundaries are
assumed to be impermeable. The top and bottom
boundaries are modeled as open boundaries with a con-
stant hydraulic head  (set to zero). A contaminant
source of constant concentration  overlies
groundwater of initial concentration , where

.

h
C Cs=

C Co=
Co 0.0 Cs< 1.0= =
P
_ÉåÅÜã~êâáåÖ= î~êá~ÄäÉJÇÉåëáíó= Ñäçï= ~åÇ= íê~åëJ
éçêí=áå=éçêçìë=ãÉÇá~=Åçåí~áåáåÖ=~å=áåÅäáåÉÇ=Ñê~ÅJ
íìêÉ

H.-J. G. Dierscha & F. Cornatonb

aWASY Institute for Water Resources Planning and Systems Research, Berlin, Germany
bCentre d’Hydrogéologie, Université de Neuchâtel, Switzerland
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The simulations cover a time of 20 years. The
model parameters are summarized in Table 3.1, where
FEFLOW-specific symbolic3,4 is used. It is assumed
that the porous matrix is isotropic and homogenous and
that the entire aquifer is completely saturated. The
parameters in FEFLOW units can be found in Table
3.2.

Graf and Therrien5 tested different fracture slopes 
and mesh refinement levels . The present
study focusses on the 45o-inclined fracture problem at
the highest grid level , consisting of 12,221 nodes
and 24,000 triangles as shown in Fig. 3.2. We use two
time stepping strategies: (1) in agreement to Graf and
Therrien5 a fully implicit time step marching scheme
(combined with a Picard iteration) with a constant time
step length of 0.2 yr, (2) alternatively, an adaptive pre-

Figure 3.1  Single 45o-inclined fracture in a porous
matrix; 2D geometry, boundary and initial conditions.
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dictor-corrector Adams-Bashforth/trapezoid rule (AB/
TR) time stepping2 with a RMS tolerance error of .
No upwinding is preferred in all simulations.

Table 3.1 Model parameters

Quantity5 Value

Width 12 m

Height 10 m

Simulation time 20 yr

Freshwater density, 1000 kg m-3

Maximum fluid density, 1200 kg m-3

Fluid dynamic viscosity,  kg m-1 yr-1

Fluid compressibility,  kg-1 m yr2

Matrix compressibility,  kg-1 m yr2

Gravitational acceleration, g  m yr-2

Tortuosity, 

Matrix permeability,  m2

Matrix porosity, 

Matrix longitudinal dispersiv-
ity, 

 m

Matrix transverse dispersiv-
ity, 

 m

Fracture dispersivity,  m

Fracture aperture, b 50 μm

Free-solution molecular diffu-
sion coefficient, D

 m2 yr-1

10 4–

ρo

ρ Cs( )

μo 3.545 104⋅

αfl 4.42 10 25–⋅

αm 2.51 10 24–⋅

9.75 1015⋅

τ 0.1

k 10 15–

ε 0.35

βL

0.1

βT

0.005

βL 0.1

0.15768
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The inclined fracture is modeled by 100 1D pipe
fracture elements fitted to the edges of the correspond-
ing triangular elements (Fig. 3.3). For the flow in the
fracture the Hagen-Poiseuille law is applied. Fluid vis-
cosity is considered independent of the concentration

.

Table 3.2 FEFLOW parameters

Quantity Value

Density ratio, 0.2

Bulk compressibility,  m-1

Matrix conductivity,  m s-1

Matrix porosity, 

Matrix diffusion coefficient,  m2 s-1

Matrix longitudinal dispersiv-
ity, 

 m

Matrix transverse dispersiv-
ity, 

 m

Fracture dispersivity,  m

Fracture area, bB  m2

Fracture compressibility,  m-1

Hydraulic aperture, a)  m

Fracture diffusion coefficient, 
D

 m2 s-1

a) Aperture b has to be corrected by the factor  due
to a different viscosity magnitude, where  and

, see Appendix D in4.

α

So 1.743 10 5–⋅

K kρog( ) μo⁄=
8.7216 10 9–⋅

ε 0.35

Dd

5 10 10–⋅

βL

0.1

βT

0.005

βL 0.1

5 10 5–⋅

S 4.4 10 6–⋅

bcorr 5.374 10 5–⋅

5 10 9–⋅

f fo⁄ 1.0747952=
f ρg μ⁄=

fo ρog μo⁄ 7.55 106 m 1– s 1–⋅= =

μ μo const= =
PKOKO dçîÉêåáåÖ=Éèì~íáçåë
The porous medium and fracture flow are transient.

Accordingly, the conservation of mass and momentum
can be described by the following equations (symbols
are summarized below under Notation):

(3-1)

(3-2)

with

(3-3)

and

Figure 3.2  2D triangular finite element mesh with 1D pipe
fracture elements used for FEFLOW and GW1 simulations.

S∂h
∂t
------ ∇ q⋅+ QEOB=

q K ∇h αC∗e+( )–=

S
So                bulk compressibility in the porous matrix

S                  compressibility in the fracture⎩
⎨
⎧

=
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(3-4)

where

(3-5)

corresponds to a normalized solute concentration. Note
that in (3-1) the term of Extended Oberbeck-Boussinesq
(EOB) approximation  is included, which is
defined as

(3-6)

If the standard Oberbeck-Boussinesq (OB)
approximation2 is applied, which is in agreement to the
assumptions done by Graf and Therrien5 , we have to
solve with .

The solute transport of a conservative tracer in the
porous matrix and the fracture is governed by the
convection-dispersion equation (solute mass balance) in
the following form:

(3-7)

with the tensor of hydrodynamic dispersion

(3-8)

K

K
kρog

μo
------------=⎝ ⎠

⎛ ⎞ I     Darcy law in the porous matrix

bcorr
2 ρog
12μo

--------------------I            Hagen-Poiseuille law in the fracture
⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

C∗
C Co–
Cs Co–
------------------=

QEOB

QEOB α– ε∂C∗
∂t

---------- q ∇C∗⋅+⎝ ⎠
⎛ ⎞=

QEOB 0≈

ε∂C
∂t
------- q ∇C ∇ D ∇C⋅( ) QEOBC+⋅–⋅+ 0=

D
εDd βT q+( )I βL βT–( )q q⊗

q
-------------+    porous matrix

DI βL
q q⊗

q
-------------                                       fracture+⎩

⎪
⎨
⎪
⎧

=

s

where

(3-9)

and

(3-10)

Note that the term  in the solute transport equa-
tion (3-7) is commonly negligible6 even in the case of
using the EOB approximation  in the flow equa-
tion (3-1).

PKOKP páãìä~íáçå=êÉëìäíë
For the 45o-inclined fracture problem the results

obtained by Graf and Therrien5 and by FEFLOW in
form of computed concentration distributions as well
as velocity fields and pathline patterns at 2, 4 and 10 yr
simulation time are shown in Fig. 3.3. It reveals how
the solutes migrate from the fracture into the adjoining
porous matrix mainly governed by hydrodynamic dis-
persion and to a small degree by convection.

As a typical feature of the problem two convection
cells form above and below the fracture with increasing
extent in time. Both cells move downward in time.
Note that the cell above the fracture moves faster
downward than the lower cell. Both convection cells
remain separated by the high-conductive fracture,
therefore, acts as a barrier to convection.

q εv=

ε
ε     porous matrix

1     fracture⎩
⎨
⎧

=

QEOBC

QEOB
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Figure 3.3  Computed concentration distributions and velocity/pathline field after 2, 4 and 10 yr simulation. Comparison of FEFLOW results obtained
by an AB/TR time stepping (right) to findings by Graf and Therrien5 modeled by a fully implicit constant time stepping (left). OB approximation is used.
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At a first glance, FEFLOW and FRAC3DVS agree
very well. However, as already seen in Fig. 3.3 the
advance of solute transport in the fracture seems
slightly faster at early times in the FRAC3DVS predic-
tions compared to the FEFLOW results. Indeed, this
can be confirmed if evaluating precisely the break-
through curves of solute at the observation point as
shown in Fig. 3.4. While the FEFLOW curves for
adaptive time stepping (taking 236 steps) and for con-
stant time steps (100 implicit steps with each of 0.2 yr
length) provide reasonably close solutions, Graf and
Therrien’s breakthrough curve is apparently advanced
at early times. Due to the high velocity contrasts
between matrix and fracture, the influence of early
times on the spreading of solute in the depth is crucial
and requires further model comparisons. 

The problem was also simulated by using the GW
finite-element simulator1. The GW results provide a
nearly perfect agreement with the FEFLOW predic-
tions (conf. Figs. 3.4, 3.5 and 3.6). As evidenced in Fig.
3.4 FEFLOW’s and GW’s breakthrough curves are
very close. This could be confirmed by using both
adaptive and constant time stepping strategies. Note
further that the type of solving the resulting sparse
equation systems did not influence the outcome. Direct
and iterative equation solvers were tested in FEFLOW.
Additionally, the Extended Boussinesq approximation
(EOB)2 is also performed. As indicated in Fig. 3.7 the
breakthrough curve for the EOB is slightly shifted in
advance compared to FEFLOW’s OB solution, how-
ever, remains further behind Graf and Therrien’s OB
solution.
s

Figure 3.4  Breakthrough curves at the observation point.
Comparison of Graf & Therrien’s results5 to GW1 (with
adaptive time stepping) and FEFLOW (with constant and
adaptive time stepping) in using OB approximation.
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Figure 3.5  History of hydraulic head h at the observation
point. FEFLOW versus GW1 results (adaptive time step-
ping) in using OB approximation.
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Figure 3.6  Computed solute concentration contours at 15
yr: FEFLOW versus GW1 results in using OB approxima-
tion.

Figure 3.7  Breakthrough curves at the observation point.
Comparison between OB approximation and EOB approxi-
mation. Adaptive time stepping is used for FEFLOW’s
solutions.
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The 45o-inclined fracture benchmark problem
firstly proposed and simulated in Graf and Therrien5 by
using FRAC3DVS9 has been recomputed by using
FEFLOW and, additionally, by the research code GW1.
The major outcome of the comparison analysis is the
following:

• In principle, Graf and Therrien’s results5 could be
confirmed.

• There is a nearly perfect agreement between
FEFLOW and GW solutions.

• FRAC3DVS produces a clearly advanced solute
breakthrough in the fractures at early times com-
pared to the FEFLOW and GW simulations.

It has been found that the discrepancies between
FRAC3DVS and FEFLOW or GW are not attributed to
different time stepping strategies, Boussinesq approxi-
mations and different sparse matrix solvers. Further-
more, more spatially refined meshes did not change
notably anymore the solutions because the mesh con-
vergence is practically achieved at the analyzed mesh
refinement level.

PKQ kçí~íáçå

Roman letters

thickness;
aperture of fracture;

, corrected aperture of
fracture;

B L
b L
bcorr L b f fo⁄=
cbcilt=ö=UV
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solute concentration;
1 normalized solute concentration;

initial or reference solute
concentration;
maximum or boundary solute con-
centration;
tensor of hydrodynamic dispersion;
free-solution molecular diffusion
coefficient;

, medium molecular diffu-
sion;

1 , gravitational unit
vector;

, relation factor;
, reference relation

factor;
gravity vector;

, gravitational acceleration;
hydraulic head;

1 unit (identity) tensor;
generalized hydraulic conductivity
tensor;
hydraulic conductivity;
permeability of porous medium;
mesh refinement level, ;
extended Oberbeck-Boussinesq
approximation term;
specific flux vector;

, fluid compressibility;
, bulk

compressibility;
generalized compressibility:
fluid velocity vector;

C ML 3–

C∗

Co ML 3–

Cs ML 3–

D L2T 1–

D L2T 1–

Dd L2T 1– τD=

e g g⁄–=

f L 1– T 1– ρg μ⁄=
fo L 1– T 1– ρog μo⁄=

g LT 2–

g LT 2– g=
h L
I
K LT 1–

K LT 1–

k L2

l l 1 …,=
QEOB T 1–

q LT 1–

S L 1– αflρog=
So L 1– εαfl 1 ε–( )αm+[ ]ρog=

S L 1–

v LT 1–
s

Greek letters

1 , density ratio;
fluid compressibility coefficient;
matrix compressibility coefficient;
longitudinal and transverse disper-
sivity, respectively;

1 porosity of porous matrix;
1 generalized void space;

fluid density;
, reference fluid density;

dynamic viscosity of fluid;
, reference dynamic

viscosity of fluid;
1 tortuosity of porous medium;

fracture slope angle;

Abbreviations

1D one-dimensional;
2D two-dimensional;
EOB extended Oberbeck-Boussinesq

approximation;
OB Oberbeck-Boussinesq approxima-

tion;
RMS root-mean square;
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Fingering instabilities can play an important role in
the spreading of heavy leachates with or without tem-
perature influences. Density-driven convection pro-
cesses in the subsurface are of growing concern in
relation to contamination and geothermal problems.
There is both a theoretical and a practical need to
model variable-density flow, multispecies mass and
heat transport phenomena with multiple buoyancy and
multidiffusive effects (see Diersch and Kolditz5).

A striking feature of such processes is that convec-
tion can occur in initially density-stable configurations
containing two or more components (solutal species,
heat) with diffusivities that make opposing contribu-
tions to vertical density gradients. A basic requirement
is in diffusivities differences of the components which
can result in buoyant instabilities capable of initiating
convection. The initial distribution and concentration
of each species (or temperature of heat) strongly influ-
ence such type of convective pattern. Consider the situ-
ation where two solutions are layered with the denser
solution on bottom, we can differ in two principal
cases: (1) If the slower diffusing species is on top, a
parcel of fluid perturbed downward across the interface
of the two species takes on mass from the surrounding
faster diffusing species so that the parcel continues to
fall. Likewise, parcels of fluid perturbed upward con-
tinue to rise. This mode of convection is termed dou-
ble-diffusive finger convection (DDFC) or multispecies
finger convection and is characterized by patterns
driven by long, narrow columns (fingers) of rising and
falling fluid. (2) Alternatively, if the species with the
higher diffusivity is on top, a parcel of fluid perturbed
downward across the interface diffuses mass outward
to the surrounding fluid more rapidly than it gains mass
from the lower-diffusivity species. The parcel of fluid
then becomes less dense than the surrounding fluid,
moves upward, and overshoots its original position
before repeating the motion. This mode of convection
is termed oscillatory double-diffusive convection and
can lead to well-mixed convecting layers separated by
sharp contrasts in fluid density (e.g., forming staircase-
type patterns5).

In reality, convective fingers can also be created as a
result of a difference in diffusivities between heat and
solute, which as been firstly detected in oceans. In this
Q
kìãÉêáÅ~ä= ëáãìä~íáçå= çÑ= î~êá~ÄäÉJÇÉåëáíó= ãìäíáJ
ÇáÑÑìëáîÉ=ÑáåÖÉêáåÖ=ÅçåîÉÅíáçå=éÜÉåçãÉå~
H.-J. G. Diersch & V. Clausnitzer

WASY Institute for Water Resources Planning and Systems Research, Berlin, Germany
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case double-diffusive finger convection is termed ther-
mohaline convection. While thermohaline convection
is responsible on large-scale circulation in oceans, it
has also been recognized that subsurface environments
(porous media and fractures) are favorable to DDFC. It
can be important at deep circulation in marine and ter-
restrial alluvial basins, for interaction of groundwater
and surface water, and in transport of dissolved solutes
from solid waste landfills.

DDFC processes were studied by Cooper et al.2 and
Pringle et al.9 via Hele-Shaw experiments using a light
transmission technique that provides high-resolution
concentration fields. From a near perturbation-free ini-
tial layering of a lighter sucrose solution over a dense
salt solution, upward and downward moving fingers
quickly form at the interface between the two solutions.
Particularly, the recent experimental data obtained by
Pringle et al.9 provide a suited baseline for use in the
development and evaluation of numerical models.

Numerical models must play an increasing role in a
better understanding of DDFC phenomena in porous
media. As already argued by Cooper et al.2 a limitation
in finger growth due to large-scale circulation con-
trolled by inertial forces as observed in ordinary fluids
(nonporous media) does not seem to exist in porous
systems characterized by low Reynolds numbers. An
intriguing possibility is that the merging and subse-
quent formation of conduits along which fingers travel
could be repeated at larger and larger scales. Cooper et
al.2 concluded that larger and greater-spaced conduits
for mass transport may naturally evolve in porous
media, leading to growth bounded on a much larger
scale than has been observed in any laboratory experi-
ments.
s

Recently, the Hele-Shaw experiments collected by
Pringle et al.9 were successfully simulated by Hughes
et al.7 using a modified version of the SUTRA code
(Voss and Provost11, Hughes and Sanford6) that com-
bines Galerkin finite-element and integrated finite-dif-
ference techniques. Their modeling results have
prompted our own numerical experiments based on the
commercial finite-element simulator FEFLOW.

The data set of Pringle et al.9 is well-suited for code
verification of DDFC numerical models because,
unlike most previous experimental Hele-Shaw data
sets, it is of sufficient spatial and temporal resolution to
allow accurate comparisons of simulated and measured
convective fingering. In addition, computational high-
resolution results obtained by different numerical
approaches and full-field images from the experimental
data set allow qualitative comparison of the evolving
flow field and quantitative comparison of mass transfer
rates.

QKO _~ëáÅ=bèì~íáçåë

Following the experimental and numerical studies
by Pringle et al.9 and Hughes et al.7, respectively, the
focus is on DDFC phenomena with solutes. Accord-
ingly, variable-density multispecies convection pro-
cesses involving multiple buoyancy and multidiffusive
effects require the solution of the following coupled
equation system for fluid mass conservation, Darcy
law, and mass balance assuming isothermal, nonreac-
tive, and fully saturated conditions:
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(4-1)

with the constitutive relationships

(4-2)
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where  denotes hydraulic head,  the Darcy flux vec-
tor,  solute concentration of species  (with  as
the maximum number of species),  is the maximum
concentration and  is the reference concentration of
species k, respectively,  the storage coefficient due to
fluid and skeleton compressibility,  the sink/source
term,  the Extended Oberbeck-Boussinesq term,

 the fluid density,  the tensor of hydraulic conduc-
tivity,  the dynamic fluid viscosity,  the viscosity
relation function,  the gravitational unit vector,  the
porosity,  the tensor of hydrodynamic dispersion of
species  (assuming Fickian-based dispersive mass
flux),  the reaction term,  the density difference
ratios (as dimensionless concentration expansion coef-
ficients),  the coefficients of fluid viscosity change,

 the coefficients of molecular diffusivity of species
,  the longitudinal and transverse dispersivities,

h q
Ck k N

Cks
Ck0

S
Q

QEOB
ρ K

μ fμ
e ε

Dk
k

Rk αk

ϑk
Dk

d

k βL βT,
respectively,  the time, and  the unit tensor. Sub-
script 0 identifies reference values.
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Pringle et al.9 used a Hele-Shaw cell to study the
temporal and spatial distribution of DDFC phenomena
of two solutes initially in a density-stable configuration
with a mean interface thickness of about m.
The Hele-Shaw cell was filled with a sucrose solution
over a denser sodium chloride solution (NaCl). The 2D
domain measures 0.2541 m (cell length L) by 0.1625 m
(cell height H), see Fig. 4.1. The Hele-Shaw cell is
inclined at an angle of  relative to horizontal. To
visualize sodium chloride concentrations and quantify
convective motion, a dye tracer with a low concentra-

t I

1 10 3–⋅

25°
cbcilt=ö=VR
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tion was mixed with the sodium chloride. The dye had
a negligible effect on fluid density. Accordingly, three
species ( ) have to be considered: sucrose
( ), sodium chloride ( ), and dye ( ).
The used parameters are summarized in Table 4.1. Note
that NaCl concentrations are not mapped perfectly by
the dye tracer because the diffusivity of sodium chlo-
ride is approximately 2.5 times greater than the diffu-
sivity of the dye (Table 4.1). Because the motion is
convective through most of the experiment, Pringle et
al.9 suggested the diffusivity differences had little
impact on the mapping of sodium chloride concentra-
tions over the length of time of the experiment.

The parameters in Table 4.1 are related to the
dimensionless Rayleigh numbers  (k = s, c), Lewis
number  and Turner number  as given in Table
4.2, where . The  number is

N 3=
k s= k c= k dye=

Rak
Le Rρ

Rac Ras Le Rρ= Le
s

defined with the smaller diffusivity in the numerator
such that .

To maintain the full physical equivalence to the
experimental and numerical studies done by Pringle et
al.9 and Hughes et al.7 the most important physical
quantities characterizing the DDC fingering problem
are the Turner number  given by 1.22, the Lewis
number  according to 0.3303 and one Rayleigh
number given for sodium chloride as .
The remaining quantities can be directly derived from
these characteristic numbers. Note that by using the
dimensionless density difference ratios  in the fluid
density  of (4-2), the density expansion becomes
independent of the real values of species concentra-
tions and the maximum concentrations  can be arbi-
trarily chosen. In agreement to the physical experiment

 and  are chosen as listed in Table 4.3

0 Le 1<<

Rρ
Le

Rac 26,460=

αk
ρ

Cks

Cks Ck0
Sucrose solution (0.05234 kg/kg)

Chloride solution (0.03463 kg/kg), dyed

Concentration of
sucrose

Concentration of
chloride

Density ρ

to
ti

Dsucrose = 4.878 . 10-10 m2/s

DNaCl = 1.477 . 10-9 m2/s

Figure 4.1  Hele-Shaw study experiment by Pringle et al.9.

H
 =

 0
.1

62
5 
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L = 0.2541 m

Aperture 1.77.10-4 m, inclination 25o

x2
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Table 4.1 Parameters of the three-species finger 
model problem

Parameter Value Unit

hydraulic conductivity, 

intrinsic permeability, 

reference density, 

reference viscosity, 

storativity, 

sucrose density expansion, 

chloride density expansion, 

dye density expansion, 

sucrose diffusivity, 

chloride diffusivity, 

dye diffusivity, 

porosity, 

dispersivity, 

viscosity change to sucrose, 

viscosity change to chloride, 

viscosity change to dye, 

K kρo g 25°sin( ) μo⁄=
1.07838 10 2–⋅ m s 1–

k 2.61 10 9–⋅ m2

ρo 998.0 kg m 3–

μo 10 3– kg m 1– s 1–

S 0.0  m 1–

αs 0.0182787 kg kg 1–

αc 0.022302 kg kg 1–

αdye 0.0 kg kg 1–

Ds
d 4.878 10 10–⋅ m2 s

1–

Dc
d 1.477 10 9–⋅ m2 s

1–

Ddye
d 5.670 10 10–⋅ m2 s

1–

ε 1.0 m3m 3–

βL βT, 0.0 m

ϑs 2.75 10 3–⋅ m2s 1–

ϑc 1.59 10 3–⋅ m2s 1–

ϑdye 0.0 m2s 1–
Table 4.2 Rayleigh, Lewis and Turner numbers

Number Value

sucrose Rayleigh number, 

chloride Rayleigh number, 

Lewis number, 

Turner number, 

Table 4.3 Maximum and reference 
concentrations

Number Value Unit

sucrose concentration, 

chloride concentration, 

dye concentration, 

reference concentrations, 

Ras
αsKH

εDs
d

--------------= 65,664

Rac
αcKH

εDc
d

---------------= 26,460

Le Ds
d Dc

d⁄= 0.3303

Rρ
αc
αs
-----= 1.22

Css 52.34 kg m 3–

Ccs 34.63 kg m 3–

Cdyes 0.25 kg m 3–

Ck0 k s c dye, ,=( )
0.0 kg m 3–
cbcilt=ö=VT
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It has been shown in stability analysis8 and Hele-
Shaw experiments1 as the Turner number  decreases
from the stability boundary at , the system transi-
tions from being diffusion-dominated to convection-
dominated The corresponding stability and instability
domains in the Rayleigh parameter space are shown in
Fig. 4.2. The current situation with a Turner number of
1.22 is clearly located in the DDFC domain with
increasing mass fluxes and finger velocities. DDFC
exists in the range . For  there is no
more an initially density-stable stratification of the sol-
utes and the system becomes gravitationally instable.

In the 16-hour Hele-Shaw experiments done by

Rρ
Le 1–

1 Rρ Le 1–<< Rρ 1<

0100002000030000
0

10000

20000

30000

Rρ = 1.22

Pringle et al. (2002)

Line of neutral
gravitational stability Rρ = 1

Stability boundary Le-1

DOUBLE-DIFFUSIVE 
FINGER CONVECTION

STABLE

UNSTABLE
Gravitational instability

Rac

R
a s

 L
e

Figure 4.2  Stability and instability domains in the Ray-
leigh parameter space with the location of the current dou-
ble-diffusive finger problem at Rρ = 1.22.
s

Pringle et al.9 a total of 300 images of the evolving
concentration field were collected. A sequence of dye
concentrations from the experiment is shown in Fig.
4.3. Time is presented as dimensionless .
The measured time stages (  and ) are listed in Table
4.4.

Table 4.4 Measured time stages

Stages [-] [sec] [hr]

a Early stage 720.5 0.20

b
Mature stage:

vertical growth 
of fingers

2342.1 0.65

c 3951.1 1.10

d 5756.8 1.60

e Fingers reach 
top and bottom

boundaries

7562.5 2.10

f 9368.2 2.60

g

Roundown 
stage

10798.5 3.00

h 12961.8 3.60

i 14034.5 3.90

j 18414.7 5.12

k 31644.6 8.79

l 56674.2 15.7

t∗ tDc
d H2⁄=( )

t t∗

t∗ t t

4.03 10 5–⋅

1.31 10 4–⋅

2.21 10 4–⋅

3.22 10 4–⋅

4.23 10 4–⋅

5.24 10 4–⋅

6.04 10 4–⋅

7.25 10 4–⋅

7.85 10 4–⋅

1.03 10 3–⋅

1.77 10 3–⋅

3.17 10 3–⋅
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a b
 c
d

g
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e f

h i
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Figure 4.3 Hele-Shaw observation results from Pringle et al.9 for the dye component at (a) , (b)
, (c) , (d) , (e) , (f) , (g)
, (h) , (i) , (j) , (k) , and (l)
. ( dimensionless time). Color sequence black-blue-green-yellow-orange-red

depicts normalized dye concentration from 0 to 1.

t∗ 4.03 10-5⋅=
t∗ 1.31 10-4⋅= t∗ 2.21 10-4⋅= t∗ 3.22 10-4⋅= t∗ 4.23 10-4⋅= t∗ 5.24 10-4⋅=
t∗ 6.04 10-4⋅= t∗ 7.25 10-4⋅= t∗ 7.85 10-4⋅= t∗ 1.03 10-3⋅= t∗ 1.77 10-3⋅=
t∗ 3.17 10-3⋅= t∗ tDc

d H2⁄=
cbcilt=ö=VV
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As seen in a sequence of concentration fields in Fig.
4.3 there are interesting features in the behavior of the
DDC system. Due to the initially perturbed solution
interface an array of distinct fingers rapidly grow in
unison at the early time stage (Fig. 4.3a,b). These fin-
gers begin to interact with one another causing a re-
organization of the initial uniform finger structure (Fig.
4.3c,d). A typical feature at this stage is a large number
of very small fingers with a wide variation in vertical
extent. As convection proceeds, small-scale fingers
continuously emerge from the region of the initial solu-
tion interface referred to as the finger generation zone
by Cooper et al.2. These newly generated fingers add to
the structural intricacy of the field by growing, and in
many cases, merging with, and convecting up through
the stems of early formed neighbors. The generation of
new finger pairs as the tips of some upward and down-
ward growing fingers can also be observed (Fig. 4.3c-
f). At  (Fig. 4.3e), the fastest growing
fingers reach the top and bottom boundaries of the cell
and begin to spread laterally forming more dense (at
the bottom) and less dense (at the top) ‘clouds’ of fluid
(Fig. 4.3f-h). Within the finger generation zone, far
from the boundaries, new fingers continue to form
from isolated pockets of nearly pristine solution
located about the initial solution interface (Fig. 4.3g-j).
Finally, at late time, the finger structure becomes ‘tree-
like’ with a branching pattern that has greater lateral
travel than a early time. This final convective structure
remains long after motion has stopped, diffusion now
acting to slowly uniformize the field (Fig. 4.3l).

t∗ 4.23 10 4–⋅=
=fs
QKQ kìãÉêáÅ~ä=jçÇÉäáåÖ

QKQKN pé~íá~ä=~åÇ=íÉãéçê~ä=ÇáëÅêÉíáò~J
íáçåI= áíÉê~íáçå= ëíê~íÉÖó= ~åÇ
ìëÉÇ=ëçäîÉêë

To solve successfully the DDFC problem a suffi-
ciently fine spatial discretization is fundamental.
Because most transfer in a DDFC system is a result of
convection, small finger dimensions may evolve.
Damping effects by artificial numerical dispersion
should be hold down on a lowest level to resolve accu-
rately the minimum finger dimension occurring in a
DDFC simulation. A further important point in DDFC
computations refers to arising numerical perturbations
which can affect the evolution of DDFC5. It is to be
expected that uniform and aligned structured meshes
with square elements can minimize uncontrollable
numerical perturbations during the simulation.

Quadrilateral meshes with different resolution were
studied by Hughes et al.7. It can be recognized as a
stepwise global refinement  of meshing according to

(4-3)

where  is the refinement level. In the global refine-
ment  of the mesh starting with the 2D discretization

 each quadrilateral is subdivided into four equally
sized quadrilaterals. The number of quadrilaterals NE
and number of nodes NP then increase according to the
refinement level :

(4-4)

ϒl

ϒl l 0 1 2 …, , ,=

l
ϒl

ϒ0

l 0 1 …, ,=

NE 41 2 10 2l+( )⋅=

NP NE 105 2 2 l+( )⋅ 1+ +=
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Table 4.5 summarizes the mesh properties up to level 4.

Hughes et al.7 simulated meshes at levels l of 0, 1
and 2. Their computations with the finest mesh at

 agreed rather well with Pringle et al.’s Hele-
Shaw experiments. They found that the coarser dis-
cretizations with  and  are inappropriate to
model the finger development with a reasonable accu-
racy. However, even their finest discretization at 
with a spatial increment of 0.248 mm is still larger than
the pixel size with 0.154 mm of the Hele-Shaw experi-
ment by a factor of 1.6. More refined meshes could not

Table 4.5 Meshes according to refinement levels l

 Level 
l

Used 
FEFLOW 

mesh

Number of 
elements

(NE)

Number of 
nodes
(NP)

Spatial 
increment

[mm]

0 - 41,984
(256 . 164)

42,405
(257 . 165)

0.992

1 - 167,936
(512 . 328)

168,777
(513 . 329)

0.496

2 mesh A 671,744
(1024 . 656)

673,425
(1025 . 657)

0.248

3 mesh B 2,686,976
(2048 . 1312)

2,690,337
(2049 . 1313)

0.124

4 - 10,747,904
(4096 . 2624)

10,754,625
(4097 . 2625)

0.062

l 2=

l 0= l 1=

l 2=
be simulated by Hughes et al.7 due to their computa-
tional limitations.

In the present FEFLOW simulations we recompute
the DDFC problem in using Hughes et al.’s finest
671,744-element mesh at . Additionally,
FEFLOW simulations are performed on a further
refined mesh having the refinement level . In the
following FEFLOW simulations we denote these
meshes as mesh A consisting of 1024 . 656 quadrilat-
eral elements (673,424 nodes) and mesh B consisting
of 2048 . 1312 quadrilateral elements (2,690,337
nodes), see Table 4.5. Mesh A is comparable to the fin-
est spatial discretization used by Hughes et al.7. Note
that the high-resolution mesh B is more refined than
the length scales of in the Hele-Shaw experiment. The
spatial increment in mesh B with 0.124 mm is smaller
than the pixel size of the Hele-Shaw experiment with
0.154 mm.

It is important to note that mesh B requires 64-bit
execution because the needed RAM is on the order of 4
GB. In the present study we prefer a fully implicit for-
ward Euler/backward Euler (FE/BE) adaptive error-
controlled predictor-corrector time stepping strategy5

and parallel computations. A sequential iterative
Picard-type strategy for the flow and transport equa-
tions (4-1) is performed as thoroughly described in
Diersch4. The adaptive time stepping and iterative pro-
cedure is controlled via a RMS error criterion using

 as dimensionless tolerance length. While the flow
equations are solved by the algebraic multigrid solver
SAMG (Stüben10, Diersch3), the transport equations are
solved by an iterative BiCGSTAB equation solver with
an incomplete LU preconditioning. Both solvers are
applied with a reduced stop criteria of  to termi-

l 2=

l 3=

10 4–

10 12–
cbcilt=ö=NMN
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nate iterations in solving the sparse finite-element
matrix equation systems. Table 4.6 summarizes the
numerical features used in the FEFLOW simulations.

Table 4.6 Numerical features used in the 
FEFLOW simulations

Feature Description

Spatial discretization Structured meshes A and B of quad-
rilateral bi-linear finite elements

Temporal discretiza-
tion

Implicit predictor-corrector FE/BE 
time stepping method with RMS 
error criterion of  

Iteration method Sequential iterative Picard-type ter-
minated with RMS error criterion of 

Iterative sparse 
matrix solvers

Flow equations (symmetric):
SAMG with stop criteria 
Transport equations (unsymmetric):
BiCGSTAB with stop criteria  
using incomplete LU precondition-
ing

Parallelization Assembly of finite element matrices
OpenMP for SAMG equation solver
Auto-parallelizing compiler options 
used for BiCGSTAB equation 
solver

Address space 64-bit

10 4–

10 4–

10 12–

10 12–
=fs
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All external boundary faces represent no-flux con-
ditions both for fluid flow and for species mass trans-
port. This is automatically satisfied by natural (zero-
value) Neumann-type boundary conditions and no
specifications are required. But, there is one exception.
Because the storativity S is zero in the flow equation
(4-1) there is no more a regular time-derivative term
and the flow equations should be linked with a
Dirichlet-type boundary condition to stabilize the
numerical solution. It is sufficient to specify at least
one node with an arbitrary head value h. While Hughes
et al.7 specified both the upper left and upper right cor-
ner nodes with values for pressure and species concen-
trations, in our simulations only the node at the centre
of the mesh is specified with a hydraulic head h of 0.0,
no extra boundary conditions are introduced for the
species concentrations.

At initial time  the three species are distributed as
follows within the 2D domain  in
a layered configuration, where the solute interface is
located at  (see Fig. 4.1):

(4-5a)

to
0 x1 L 0 x2 H≤ ≤,≤ ≤( )

x2 0=

Cs x to,( )

Css 0 x1 L 0 x2
H
2
----≤ ≤,≤ ≤⎝ ⎠

⎛ ⎞

Cs0 0 x1 L H
2
----– x2 0<≤,≤ ≤⎝ ⎠

⎛ ⎞

⎩
⎪
⎪
⎨
⎪
⎪
⎧

=
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(4-5c)

The present finger convection problem is very sen-
sitive with respect to perturbations. Pringle et al.9
expended significant effort in minimizing initial pertur-
bations for the Hele-Shaw experiment. Although the
thickness of the solute interface was small (about 1
mm), perturbations at the start of the experiment could
not be avoided. They were seeds for initial finger
developments. For the numerical simulation a control
of such type of initial seeds for finger developments is
needed. This should be mimicked by the following ran-
dom procedure as proposed by Hughes et al.7. 

Random noise with a mean of zero and maximum
amplitude of 0.5% of maximum initial concentrations

 is applied for both sucrose and sodium chloride at
the initial solution interface. Dye concentrations at the
interface are not perturbed. To develop initial perturba-
tions for sucrose and sodium chloride their nodal con-
centrations at nodes sharing the solute interface at

 are modified as follows:

Cc x to,( )

Cc0 0 x1 L 0 x2< H
2
----≤,≤ ≤⎝ ⎠

⎛ ⎞

Ccs 0 x1 L H
2
----– x2 0≤ ≤,≤ ≤⎝ ⎠

⎛ ⎞

⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

Cdye x to,( )

Cdye0 0 x1 L 0 x2< H
2
----≤,≤ ≤⎝ ⎠

⎛ ⎞

Cdyes 0 x1 L H
2
----– x2 0≤ ≤,≤ ≤⎝ ⎠

⎛ ⎞

⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

Cks

x2 0=
DO FOR ALL INTERFACE NODES I {
   RN1 = RANDOM NUMBER BETWEEN 0 AND 1
   IF (RN1 < 0.5) {
      
   }
   ELSE {
      
   }

   RN2 = RANDOM NUMBER BETWEEN 0 AND 1
   IF (RN2 < 0.5) {
      
   }
   ELSE {
      
   }
}

where  and  correspond to the - and -coordi-
nates of node I.

To have comparable initial perturbations for both
mesh A and B the perturbation procedure at the inter-
face nodes is firstly applied to mesh A. This perturba-
tion pattern is then inherited to mesh B when mesh A is
globally refined from level  to level  by
subdivision (each quadrilateral element is subdivided
into four quadrilateral elements). However, in a last
case we will deviate from this inherited perturbation
and present simulations with initial perturbations
directly generated on the refined mesh B.

QKR oÉëìäíë

Table 4.7 summarizes the performance results

Cs x1
I x2

I 0 to,=,( ) 0.01 RN1 Css⋅ ⋅=

Cs x1
I x2

I 0 to,=,( ) Css=

Cc x1
I x2

I 0 to,=,( ) 0.01 RN2 Ccs⋅ ⋅=

Cc x1
I x2

I 0 to,=,( ) Ccs=

x1
I x2

I x1 x2

l 2= l 3=
cbcilt=ö=NMP
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attained in the FEFLOW simulations for meshes A and
B. While the run time of mesh A required about 1 day
on a double processor machine (6 GB RAM, 3 GHz
clock speed, MS XP Enterprise x64 Edition), mesh B
took a run time of about one week. It is interesting to
note that the parallel-version of the SAMG solver have
accelerated the simulation time by a factor of about two
as indicated in Table 4.7. The simulation of mesh A and
B required 3205 and 3626 adaptive time steps, respec-
tively. The time step history for the mesh B simulation
is plotted in Fig. 4.4.

Figure 4.6 shows the FEFLOW-simulated dye con-
centrations for mesh A at the same dimensionless times
of Pringle et al.9 (cf. Table 4.4). The results agree rather
well with the computations obtained by Hughes et al.7
as displayed in Fig. 4.7. Qualitatively, the numerical
results are similar to the experimental results as seen in
Fig. 4.8 in comparison to the mesh B results. As

Figure 4.4  Time stepping history for mesh B.
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already indicated by Hughes et al.7 the experimental
vertical finger evolution appears to be slightly ahead of
the simulated fingers.

A more quantitative comparison can be done by
using the vertical mass flux exemplified for the dye
concentrations. A normalized mass transfer of dye
upward across the centerline of the cell can be defined
according to

(4-6)

where  is the dye mass above the centerline of the
Hele-Shaw cell at time  and  is the total dye mass
in the cell. Numerical results compare reasonably well
to observed values of  as depicted in Fig. 4.5. As

Table 4.7 FEFLOW performance results

Mesh
Number of 
adaptive 

time steps
CPU timea)

a) Approximate total simulate time on a double
processor server with 3 GHz clock speed, 6 GB
RAM, MS Windows XP Enterprise x64 Edition,
two single-core Intel Xeon CPUs. Executable
and libraries are compiler-optimized using
options of auto-parallelization.

A 3205 ~1 day
(~2.5 days)b)

b) SAMG solver without OpenMP parallelization.

B 3626 ~7.5 days
(~16 days)b)

M∗ M Mo⁄=

M
t∗ Mo

M∗
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also seen there FEFLOW’s and Hughes et al.7’s results
agree very well. Their agreement with the Hele-Shaw
experiment is acceptable until . After

, the simulated mass transfer  is less
than observed mass transfer. Larger percent errors at
early times are an artifact of small  values and rep-
resent small absolute differences in mass transfer (e.g.,
0.011 observed and 0.017 simulated) influenced by the
initial perturbation at the interface nodes for the given
spatial discretization. Note further that the simulated
mass transfer  did not changed anymore if using a
more refined mesh (cf. mesh A and mesh B results in
Fig. 4.5). It indicates that the numerical accuracy with
respect to the mass transfer is sufficiently achieved at a
lower refinement level as given for mesh A. Table 4.8
compares the measured mass transfer  against the
FEFLOW results obtained for mesh B.

A comparison of the finger evolution for the two
meshes A and B are exhibited in Fig. 4.9. It reveals a
slightly faster finger development for the more refined
mesh B compared to the coarser mesh A. While for
mesh A at the front of the fingers small wiggles in the
numerical solution could be observed at early times
(indicated by white color spots in the fringed distribu-
tions of Fig. 4.9 left), the solution for mesh B is fully
wiggle-free.

We also studied the influence of the Oberbeck-
Boussinesq approximation and the fluid viscosity on
the simulation results. Noticeable but not significant
differences exist in the simulated finger patterns when
comparing the solutions with and without the Ober-
beck-Boussinesq approximation as seen in Fig. 4.10.
More influence on the finger pattern results from the
fluid viscosity effect. As evidenced in Fig. 4.11 a con-

t∗ 1 10 3–⋅=
t∗ 1 10 3–⋅= M∗

M∗

M∗

M∗
stant viscosity solution produces a slightly faster finger
development as for the case with a variable (concentra-
tion-dependent) viscosity.

The influence of the initial perturbation on the fin-
ger development can be seen in Fig. 4.12 resulting for a
mesh B simulation. On the one hand, it shows the fin-
ger pattern evolving from a perturbation which has

Table 4.8 Measured vs. simulated M*

t*

M*

Hele-Shaw 
experiment

Pringle et al.9
FEFLOW
mesh B

a 0.01 0.02

b 0.05 0.05

c 0.10 0.08

d 0.15 0.12

e 0.20 0.16

f 0.25 0.20

g 0.30 0.23

h 0.35 0.28

i 0.40 0.30

j 0.45 0.36

k 0.50 0.41

l 0.51 0.42

4.03 10 5–⋅

1.31 10 4–⋅

2.21 10 4–⋅

3.22 10 4–⋅

4.23 10 4–⋅

5.24 10 4–⋅

6.04 10 4–⋅

7.25 10 4–⋅

7.85 10 4–⋅

1.03 10 3–⋅

1.77 10 3–⋅

3.17 10 3–⋅
cbcilt=ö=NMR
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been inherited from the coarser mesh A. On the other
hand, it also exhibits the case of initial perturbations
which has been directly generated on the refined mesh
B. As revealed the perturbation significantly affects the
local finger structure of the convection system while
the average quantities, such as the mass transfer,
=fs
remain comparable. In this case the growth of fingers
in the vertical extent is slightly slower because the per-
turbation of the interface nodes on the refined mesh has
a smaller scale (nodal spacing is smaller) compared to
the perturbation inherited from the coarser mesh (spac-
ing of the perturbed nodes is larger).
Figure 4.5  Normalized mass transfer across the center line M*. Comparison of observed data taken by Pringle et al.9
and numerical results by Hughes et al.7 (left) with FEFLOW results computed for meshes A and B (right).
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Figure 4.6 FEFLOW results simulated with mesh A for the dye component at (a) , (b)
, (c) , (d) , (e) , (f) , (g)
, (h) , (i) , (j) , (k) , and (l)
. ( dimensionless time). Color sequence blue-green-yellow-orange-red depicts

normalized dye concentration from 0 to 1.

t∗ 4.03 10-5⋅=
t∗ 1.31 10-4⋅= t∗ 2.21 10-4⋅= t∗ 3.22 10-4⋅= t∗ 4.23 10-4⋅= t∗ 5.24 10-4⋅=
t∗ 6.04 10-4⋅= t∗ 7.25 10-4⋅= t∗ 7.85 10-4⋅= t∗ 1.03 10-3⋅= t∗ 1.77 10-3⋅=
t∗ 3.17 10-3⋅= t∗ tDc

d H2⁄=
cbcilt=ö=NMT
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Figure 4.7 Simulated results by Hughes et al.7 for the dye component at (a) , (b)
, (c) , (d) , (e) , (f) , (g)
, (h) , (i) , (j) , (k) , and (l)
. ( dimensionless time). Color sequence black-blue-green-yellow-orange-red

depicts normalized dye concentration from 0 to 1. Figure taken from Hughes et al.7.

t∗ 4.03 10-5⋅=
t∗ 1.31 10-4⋅= t∗ 2.21 10-4⋅= t∗ 3.22 10-4⋅= t∗ 4.23 10-4⋅= t∗ 5.24 10-4⋅=
t∗ 6.04 10-4⋅= t∗ 7.25 10-4⋅= t∗ 7.85 10-4⋅= t∗ 1.03 10-3⋅= t∗ 1.77 10-3⋅=
t∗ 3.17 10-3⋅= t∗ tDc

d H2⁄=
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Figure 4.8 Comparison of Hele-Shaw experiments from Pringle et al.9 to FEFLOW results simulated with mesh
B for the dye component at different times . ( dimensionless time). Case of variable fluid viscos-
ity . Color sequence black-blue-green-yellow-orange-red depicts normalized dye concentration
from 0 to 1.

t∗ t∗ tDc
d H2⁄=

fμ μo μ Ck( )⁄=

t∗ 1.31 10-4⋅=

t∗ 3.22 10-4⋅=

t∗ 7.25 10-4⋅=

Hele-Shaw experiments (Pringle et al., 2002) FEFLOW with mesh B (NE = 2,686,976)

0 1
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Figure 4.9 FEFLOW results simulated for the dye component at different times . ( dimension-
less time). Comparison between mesh A (left) and mesh B (right) for the case of variable fluid viscosity

. Color sequence black-blue-green-yellow-orange-red depicts normalized dye concentration
from 0 to 1.
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t∗ 3.17 10-3⋅=

Mesh A (NE = 671,774) Mesh B (NE = 2,686,976)

0 1
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Figure 4.10 FEFLOW results simulated with mesh A for the dye component at different times .
( dimensionless time). Comparison of Oberbeck-Boussinesq approximation  (left) to the
Extended Oberbeck-Boussinesq approximation  (right) for the case of constant fluid viscosity .
Color sequence black-blue-green-yellow-orange-red depicts normalized dye concentration from 0 to 1.
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Figure 4.11 FEFLOW results simulated with mesh A for the dye component at different times .
( dimensionless time). Comparison of constant fluid viscosity  (left) to the variable fluid vis-
cosity case  (right). Color sequence black-blue-green-yellow-orange-red depicts normalized dye
concentration from 0 to 1.
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d H2⁄= fμ 1≡
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t∗ 3.22 10-4⋅=

t∗ 7.25 10-4⋅=
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Figure 4.12 FEFLOW results simulated with mesh B for the dye component at different times .
( dimensionless time). Influence of perturbation applied to the initial solution interface. Case of
variable fluid viscosity . Color sequence blue-green-yellow-orange-red depicts normalized dye
concentration from 0 to 1.
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The FEFLOW simulator provides the capability to
simulate complex DDFC phenomena for fine mesh res-
olutions. For each species (and in addition temperature
in case of need) multiple density expansions and vis-
cosity change parameters can be specified. The viscos-
ity relationship can be freely defined for species (and
temperature) via a flexible formula editor. FEFLOW is
parallelized and uses an efficient algebraic multigrid
solver to speed-up the computations.

The FEFLOW simulations have been tested for a
2D DDFC problem against the Hele-Shaw experiment
done by Pringle et al.9 and the numerical study per-
formed by Hughes et al.7, where good agreements
could be found. Structured meshes (A and B) of higher
resolution at a refinement level of 2 and 3 consisting of
673,425 and 2,690,337 nodes were applied. The finest
discretization B with 0.124 mm is smaller than the
pixel size of the Hele-Shaw experiment with 0.154
mm.

Within the extensive numerical investigations we
studied the influence of following features:

• mesh effects,
• computational acceleration by parallelization,
• viscosity effects,
• mass transfer across the centerline,
• extensions to the Oberbeck-Boussinesq approxi-

mation,
• perturbation of the initial solution interface.

For this complex and difficult problem class of convec-
tion phenomena FEFLOW has shown a robust and effi-
=fs
cient simulator in 2D applications. Even 3D DDFC
applications seem to be possible in the future.

kçí~íáçå

Roman letters

concentration;
tensor of hydrodynamic dispersion;
coefficient of molecular diffusion;

1 gravitational unit vector;
1 fluid viscosity relation function;

gravitational acceleration;
cell height;
hydraulic (piezometric) head;

1 unit vector;
tensor of hydraulic conductivity;
constant hydraulic conductivity;
intrinsic permeability;
cell length;
Lewis number;
mesh level;
mass;

1 dimensionless mass;
maximum number of species;
number of elements;
number of nodes (points);
sink/source term;
extended Oberbeck-Boussinesq
approximation term;
Darcy velocity;
reaction term;
Rayleigh number;

C ML 3–

D L2T 1–

Dd L2T 1–

e
fμ
g LT 2–

H L
h L
I
K LT 1–

K LT 1–

k L2

L L
Le
l
M M
M∗

N
NE
NP
Q T 1–

QEOB T 1–

q LT 1–

R ML 3– T 1–

Ra
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Turner number;
storage coefficient /  storativity;
time;

1 dimensionless time;
global Cartesian coordinate vector;
2D Cartesian coordinates;

Greek letters

1 density difference ratio;
longitudinal and transverse disper-
sivity, respectively;

1 porosity, void space;
coefficient of fluid viscosity change;
dynamic viscosity of fluid;
fluid density;
global refinement;
Nabla (vector) operator;

Subscripts

chloride;
dye;
species indicator;
reference / initial;
sucrose;
maximum;

Superscripts

diffusive;
nodal index;

Rρ
S L 1–

t T
t∗
x L
x1 x2, L

α
βL βT, L

ε
ϑ L2T 1–

μ ML 1– T 1–

ρ ML 3–

ϒ
∇ L 1–

c
dye
k
0
s
s

d
I

Abbreviations

2D two-dimensional;
3D three-dimensional;
CPU central processing unit
DDC double-diffusive convection;
DDFC double-diffusive finger convection;
FE/BE forward Euler/backward Euler

scheme;
GB gigabyte;
EOB extended Oberbeck-Boussinesq

approximation;
RAM random access memory;
RMS root-mean square;
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