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Abstract
A new feature in FEFLOW allows the modeling of variable-
density problems even in 2D horizontally schematized aqui-
fers with a sloped or curved geometry. The theoretical basis,
the limitations of the approach and typical applications are
discussed in the paper.

NKN fåíêçÇìÅíáçå

Variable-density problems plays an important role
in numerous natural and engineered systems. Saltwater
intrusion and geothermal transport processes are here
the most typical applications in the field of geo-
sciences. A detailed review on variable-density pro-
cesses is given in Diersch and Kolditz1. The numerical
effort in solving variable-density problems has shown
generally high due to the potential need for an expen-
sive spatial and temporal discretization. This has seri-
ous consequences particularly in modeling of 3D
problems, where the meshes must be appropriately
refined in all coordinate directions. In a 3D model,
even if the aquifer is thin relative to its horizontal
dimension, a sufficient vertical discretization is com-
monly required (Fig. 1.1).
However, there is a special case for which a fully
three-dimensional meshing of the problem can be
given up if the following conditions hold:

• There is a thin aquifer with an essentially horizon-
tal (aquifer-type) flow for which the vertical flow
components can be neglected. The horizontal
extent of the aquifer is much larger compared to
the aquifer thickness. Accordingly, flow and trans-
port equations can be vertically integrated. This
procedure is associated with the well-known
Dupuit assumption2.

• The aquifer is slightly sloped or curved so that
gravity can effect the movement of a solute (or
heat) in such an aquifer.

• The aquifer is confined.

A typical application refers to the brine movement
in a large-scale deep aquifer of a basin form. The brine
moves down in deeper locations of the basin by gravity
effects. The process is density-driven due to the sloped
geometry of the aquifer layer. Under such conditions
there is a way to model the variable-density solute dis-
tribution only in two dimensions. It is based on a 2D
N
jçÇÉäáåÖ= î~êá~ÄäÉJÇÉåëáíó= éêçÄäÉãë= áå= Oa= ÜçêáJ
òçåí~ääó= ëÅÜÉã~íáòÉÇ= ~èìáÑÉêë= ìëáåÖ= éêçàÉÅíÉÇ
Öê~îáíó
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horizontally schematized aquifer described by verti-
cally integrated equations and a projected gravity field.
This approach is available with the FEFLOW release
5.1.

NKO _~ëáÅ=bèì~íáçåë

The 2D vertically averaged flow and transport equa-
tions valid for a confined aquifer can be summarized as
(cf.2):

(1-1)

(1-2)

(1-3)

(1-4)

Figure 1.1 Three-dimensionally discretized basin (verti-
cal exaggeration 6 : 1).
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The symbols are explained in Appendix A. The impor-
tant difference to the standard formulation for 2D hori-
zontal problems in confined aquifers (see the
Reference Manual2) is the gravity term 
appearing in (1-2). This term normally vanishes for a
’perfect’ horizontal aquifer geometry because the grav-
ity acts always perpendicular (vertical) to the aquifer
horizon. However, if the aquifer is sloped or curved
there are components of the gravity directed along the
layer of the aquifer.
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`ççêÇáå~íÉë= ñÛ= ~åÇ= íÜÉ
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Let us consider the situation of an inclined aquifer
layer as shown in Fig. 1.2. We introduce local coordi-
nates  at a local point on the inclined aquifer in such
a manner that  and  form the principal axes corre-
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lated with the geological layer structure, while  is
directed perpendicular to the actual 2D -computa-
tional plane. 

The coordinate transformation between the global
coordinates  and the local (layer-oriented) coordi-
nates  is described by the rotation matrix  as

(1-6)

Accordingly, the gravity components in the local coor-
dinates are given by the transformation

z'
x' y'–

Figure 1.2 Global -coordinate system and local
(rotated) -coordinate system for a finite element
located on an inclined aquifer layer. Global gravity vector g
dissected by its local components .
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The rotation matrix  is performed for each finite
element e as , which is thoroughly described in3. The
components of  have the form:

(1-8)

where  are directional vectors, which are evaluated
for each finite element e in the 3D space3.

The complete set of governing equations (1-1) to (1-
5) are formulated in the local coordinates , where the
gravitational unit vector  in (1-2) is also written for
the local -components directed along the princi-
pal axes of the inclined layer. They can be computed by
the projection

(1-9)

Note, in (1-9) it is  and it is assumed that the
gravity acts strictly downwards parallel to the global z-
axis, i.e.,  and , where g is the
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gravitational acceleration constant.

In using this transformation procedure the 3D prob-
lem is mapped onto a 2D geometry so as exemplified
for an idealized hemispherical basin geometry in Fig.
1.3. The variable-density effect is illustrated in Fig. 1.4
for this example. It shows how a dense solute sinks
down to the centre of the hemispherical basin in time
caused by an exclusive action of gravity (i.e., forced by
free convection). The density-driven solute movement
is strongly dependent on the parameter heterogeneity
so as indicated.

z

y

x

x′

y′

Figure 1.3 Transformation of a 3D hemispherical basin
geo-metry into a 2D projected domain: a) 3D geometry in
global coordinates, b) 2D projected ’horizontal’ mesh to be
solved in local coordinates, and c) plot of projected gravity
components in the  plane.x' y'–
Figure 1.4 Sinking down of a brine into a hemispherical
basin in time: (left column) homogeneous transmissivity,
(right column) heterogeneous transmissivity distribution.
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The density-couple problem which will to be solved
by such a 2D horizontal aquifer schematization with a
projected gravity is to be defined in FEFLOW (from
release 5.1) as follows:

• 2D horizontal problem for a confined aquifer,
• flow and mass, flow and heat or thermohaline

problem type.

With these problem definitions FEFLOW’s Flow Mate-
rial Data editor provides the new specific entries Den-
sity ratio (related) or/and Expansion coefficient
(related) as shown in Fig. 1.5. If selecting the button(s)
a dialog appears which allows the input of the density
ratio or the expansion coefficient constants as well as
the required link to a reference distribution, which must
contain the global z-coordinates of the aquifer layer. If
the density or the expansion coefficient constants are
set to zero (as default) there will be no density cou-
pling.

Figure 1.5 Input of the so-called related density parameters:
a) solute density ratio or expansion coefficient constant(s),
b) a link to the reference distribution containing the z-coor-
dinates of the aquifer, and c) preview of the resulting pro-
jected gravity field.

a bc
These entries for the related density parameters are
only attainable if a (at least one) reference distribution
is introduced before in FEFLOW’s Reference Data
Editor. In this Reference Data Editor the global z-coor-
dinates of the aquifer layer have to be assigned at each
node of the 2D mesh. Accordingly, the slope or curva-
ture of the aquifer layer can be described locally in an
arbitrary manner. The global z-coordinates can be
extracted from an elevation distribution of an already
existing 3D model or via the common regionalization
techniques based on sample point data.

Important note: The 2D coordinates of the finite ele-
ment mesh have to be always input in the standard glo-
bal x-y-coordinates, i.e., x and y are coordinates
projected on the exact horizon. The transformation into
the -coordinates is done completely internally in
the simulator and is hidden by the user. The computa-
tional results are again shown and evaluated strictly in
the global x-y-coordinates.

NKR iáãáí~íáçåë

This approach is applicable for relatively thin aqui-
fers in which flow and density effects in the -direc-
tion perpendicular to layer-oriented principal directions
are negligible. This can be often assumed for aquifer
layers having a small slope or low curvature in their
elevations. Furthermore, the solute (or heat) must be
assumed invariable over the aquifer thickness (that
means along ). If the aquifer slope is becoming larger
and the density effects are increasing, the density-
driven convection process modeled by such a projected
gravity field must be more and more inaccurate due to

x' y'–

z'

z'
cbcilt=ö=V
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the fact that the approach suppresses vertical velocities
when becoming dominant in a convection process. The
inaccuracy particularly increases with the increasing
slope of the layer for free convection at a high density
contrast (high Rayleigh number) when the solute (or
heat) movement is fully gravity-driven. For mixed con-
vection problems (combined with a forced flow
dynamics induced, for instance, by pumping), however,
a larger slope in the geometry can often be tolerated.
Generally, it is not possible to fix limits in form of crit-
ical slopes and curvature because it is context-depen-
dent. In case of doubt a full 3D model should be used
for cross-checking purposes.

NKS _ÉåÅÜã~êâ=bñ~ãéäÉ

Let us compare the proposed gravity-projection
approach against a standard solution for a density-
driven convection problem (Fig. 1.6). We choose a
transient fingering problem with a high density contrast
(Rayleigh number should be 1667) which refers to the
most critical problem class in the present context. We
will find that even for such a difficult example the
agreement of the results is very well.

The reference problem is a vertical fingering con-
vection process. In a closed box a dense solute sinks
down to the bottom producing a characteristic finger-
ing pattern in time as shown in Fig. 1.7 (left). The den-
sity ratio  is . The measure of the box is 1 m x
1 m. The conductivity K is  m/s, the porosity  is
0.3, molecular diffusion  is m2/s, there is no
dispersivity . The box is impervious
with respect to both the flow and the solute.

α 5 10 3–⋅
10 4– ε

Dd 10 9–

βL βT 0.0= =
ff
We compare the results to a sloped aquifer layer
approach. The slope of the layer  is assumed uniform
with . To get a full physical equivalence to the refer-
ence problem we have to choose as follows: measure of
the x-y-projected area is 0.9962 m ( ) x 1m, the
transmissivity T is m2/s, the density ratio  must
be increased to . The
remaining parameters are the same.

The solutions of the reference (standard vertical)
problem and the solutions of the projected convection
problem are compared in Fig. 1.7. It reveals a very
good agreement between the reference problem and the
solution for the sloped layer with gravity projection.

θ
5°

θcos
10 4– α
5 10 3–⋅ θsin⁄ 5.7369 10 2–⋅=

1m

0.
64

9 
m

0.
18

2 
m

0.325 m

0.350 m

1 m

Cs 

K = 10-4 m/s
Dd = 10-9 m2/s
βL = βT = 0

slope θ = 5ο

g

a)

b)

z

y

x

Figure 1.6 Benchmark example: a) reference problem of a
vertical domain, b) equivalent sloped layer problem with
projected gravity field.
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Figure 1.7 Comparison between the vertical (left column)
and the sloped layer (right column) fingering convection of
a dense solute sinking down in a square closed box (concen-
trations and streamlines are shown at selected times in the x-
y-plane, fringes are upscaled to the maximum time values).

t [d]

0.0

5

15

100
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FEFLOW (release 5.1 and further) is now capable
of solving density-driven problems in a 2D horizontal
schematization by using a projected gravity field. It
represents an important and cost-effective alternative to
a full 3D solution whenever the density-dependent
mass and/or heat transport problem can be modeled for
a single confined aquifer with a small to moderate
sloped or curved geometry. It should be particularly
useful in modeling large-scale brine transport for min-
ing and hydrogeological applications.
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Latin symbols
1 rotation matrix;

aquifer thickness;
 concentration and reference

a
B L
C Co, ML 3–
cbcilt=ö=NN
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concentration (salinity),
respectively;
maximum concentration;
specific heat capacity of fluid;
tensor of mechanical dispersion;
molecular diffusion in the porous
medium;

1 gravitational unit vector with respect
to local coordinates;

1 fluid viscosity relation function;
gravity vector in global coordinate
directions;
gravity vector in local coordinate
directions;
gravitational acceleration;
hydraulic (piezometric) head;

1 unit vector;
depth-integrated flow sink/source;
depth-integrated mass sink/source;
depth-integrated thermal sink/
source;
depth-integrated Darcy flux vector;
depth-integrated retardation factor;

1 depth-integrated storage coefficient;
tensor of transmissivity;
temperature and reference
temperature, respectively;
time;
directional vector;
global Cartesian coordinate vector;
global Cartesian coordinates;
local Cartesian coordinate vector;
local Cartesian coordinates;

Cs ML 3–

c L2T 2– Θ 1–

D L3T 1–

Dd L2T 1–

e'

fµ
g LT 2–

g' LT 2–

g LT 2–

h L
I
Qρ LT 1–

QC ML 2– T 1–

QT MT 3–

qf L2T 1–

R L
So
T L2T 1–

T To, Θ

t T
u L
x L
x y z, , L
x' L
x' y' z', , L
ff
Greek symbols

1 solutal expansion coefficient;
thermal expansion coefficient;
longitudinal and transverse
dispersivity, respectively;

1 porosity;
slope of aquifer layer;

depth-integrated tensor of thermal
hydrodynamic dispersion;
thermal conductivity for fluid and
solid, respectively;
fluid density and reference fluid
density;

1 adsorption function;
Nabla (vector) operator with respect
to local coordinates;

Subscripts

coordinate indices;
reference value;
global coordinate directions;
local coordinate directions;

Superscripts

element;
fluid (water) phase;
solid phase;

α
β Θ 1–

βL βT, L

ε
θ °
Λ ML2T 3– Θ 1–

λf λs, MLT 3– Θ 1–

ρf ρo
f, ML 3–

χ C( )
∇ L 1–

i j,
o
x y z, ,
x' y' z', ,

e
f
s
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Generally, the fluid density  varies with pressure
p, temperature T and concentration of various compo-
nents  (where  stands for the 's of all compo-
nents present in the fluid) according to relations called
equations of state:

(2-1)

Symbols are summarized in the Appendix A. From (2-
1) it follows that

(2-2)

where

ρf

Ck Ck Ck

ρf ρf p T Ck, ,( )=

dρf ρf∂
T∂

-------
p Ck,

dT ρf∂
p∂

-------
T Ck,

dp ρf∂
Ck∂

---------
k
∑

p T,

dCk+ +=

 ρf βdT γdp αkdCk+ +( )=
(2-3)

with:
: coefficient of thermal expansion at constant pres-

sure and concentration, 
: coefficient of compressibility of the fluid at constant

temperature and concentration, 
: introduces the effect of a density change due to the

concentration of a kth component at constant tempera-
ture and pressure.
 

If, in certain ranges of p, T and , the coefficients
,  and  are constants or can be approximated as

such for a given fluid, the equation of state (2-1) takes
on the specific form1

β 1
ρf
---- ρf∂

T∂
-------

p Ck,
=

γ 1
ρf
---- ρf∂

p∂
-------

T Ck,
=

αk
1
ρf
---- ρf∂

Ck∂
---------

p T,

=















β

γ

αk

Ck
β γ αk
O
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(2-4)

with

(2-5)

where  when ,  and 
that is when T, p and  are respectively equal to the
reference temperature , reference pressure  and
reference concentration . Equation (2-4) states that
the density  can be approximated by a linear form.

In FEFLOW the following EOS for fluid density is
implemented2:

(2-6)

with  defined in (2-5) and  is normalized by the sat-
uration concentration of the solute at saturation, .
 

It is important to notice that the EOS for the fluid
density coded in FEFLOW version 5.0 (Eq. (2-6)) is
valid only in a rage of 0-100°C. Moreover it does not

ρf ρo
f  exp β T To–( )– γ p po–( ) αk Ck Cko–( )

k
∑+ +=

 ρo
f 1 β T To–( )– γ p po–( ) αk Ck Cko–( )

k
∑+ + 

 ≈

β 1
ρo

f
----- ρf∂

T∂
-------

p Ck,
=

γ 1
ρo

f
----- ρf∂

p∂
-------

T Ck,
=

αk
1
ρo

f
----- ρf∂

Ck∂
---------

p T,

=















ρf ρo
f= T To= p po= Ck Cko=

Ck
To po
Cko

ρf

ρf ρo
f 1 β T To–( )– α

Cs Co–( )
----------------------- C Co–( )+ 

 =

β α
Cs
ff
take in account the coefficient of compressibility  and
only one component can be considered in the effect of a
density change due to its concentration. The following
empirical relationship is given for 

(2-7)

While the above linear approximation for  is nor-
mally sufficient for the most practical needs, wide
ranges of pressure and temperature require variable
thermal fluid expansion  (Eq. (2-5)) and fluid com-
pressibility  (Eq. (2-5)) within the state equation of
density (2-6).

OKO bñíÉåÇÉÇ=blp

The coefficients of thermal expansion  and
compressibility  for water will be derived for a
wide range of pressure  MPa and temper-
ature  and coded for the finite-element
program FEFLOW 5.1.

Figure 2.1 shows the well-known pressure-tempera-
ture diagram of water. Since we are interested in liquid
phase in a range of 0-350 °C for the temperature and
less or equal than 100 MPa for the pressure, we focus
our study in region 1, which boundaries are

 MPa and , where  is
the saturation pressure of water.

γ

α

α
ρf Cs( ) ρo

f–

ρo
f

---------------------------=

α

β
γ

β p T,( )
γ p T,( )

pSat p 100≤<
0 T 350 °C≤ ≤

pSat p 100≤< 0 T 350 °C≤ ≤ pSat
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The following expression provides a good approxi-
mation with an accuracy of 0.5% for  in the region 1
(Fig. 2.1):

(2-8)

where

(2-9)

Figure 2.1 Pressure-temperature diagram of water. Domain
of interest is region 1, which boundaries are 
MPa and .

pSat p 100≤<

0 T 350 °C≤ ≤

B

LIQ
UID

VAPOR

SOLID LIQUID

SOLID
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T

0 0.0098 100 374350
TEMPERATURE  *C
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ES

SU
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0.00603
      ATM
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1000 ATM

ρf

ρf T p,( ) a p( ) b p( )T c p( )T2 d p( )T3 e p( )T4

              f p( )T5 g p( )T6
+ + + +

+ +
=

in  [kg/m3]
0 T 350 °C  and  pSat p 100 MPa≤<≤ ≤

a p( ) ao a1p a2p2+ +=

b p( ) bo b1p b2p2+ +=

…

g p( ) go g1p g2p2+ += 









with temperature T in  and the pressure p in kPa.
The coefficients for fresh water are listed in Tab. 2.1.

Table 2.1 Coefficients of the polynomial surface 
fitting of freshwater density  in region 1 as 
expressed in Eq. (2-9) and its derivatives (T in  

and p in kPa)

Coefficient Value

9.99792877961606E+02

5.07605113140940E-04

-5.28425478164183E-10

5.13864847162196E-02

-3.61991396354483E-06

7.97204102509724E-12

-7.53557031774437E-03

6.32712093275576E-08

-1.66203631393248E-13

4.60380647957350E-05

-5.61299059722121E-10

1.80924436489400E-15

-2.26651454175013E-07

3.36874416675978E-12

-1.30352149261326E-17

6.14889851856743E-10

-1.06165223196756E-14

4.75014903737416E-20

°C

ρf T p,( )
°C

ao

a1

a2

bo

b1

b2

co

c1

c2

do

d1

d2

eo

e1

e2

fo

f1

f2
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The coefficients have been derived for freshwater
conditions, so the surface (Fig. 2.2) given by Eq. (2-8)
is related to a reference concentration . There-
fore introducing a reference temperature  and a ref-
erence pressure  we can derive an expression for the

-7.39221950969522E-13

1.42790422913922E-17

-7.13130230531541E-23

Table 2.1 Coefficients of the polynomial surface 
fitting of freshwater density  in region 1 as 
expressed in Eq. (2-9) and its derivatives (T in  

and p in kPa) (continued)

Coefficient Value

ρf T p,( )
°C

go

g1

g2

Figure 2.2 Freshwater density  as a function of pressure
and temperature in region 1. For pictorial clarity,  is set to
zero outside region 1.

ρf

ρf

de
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g/
m

3 ]
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Co 0=
To

po
ff
reference fluid density  from (2-8), viz.,

(2-10)

For instance, if we take atmospheric pressure ( =
100 kPa) and  as the reference pressure and
temperature, respectively, from (2-10) and the coeffi-
cients definition in (2-9) we obtain:

(2-11)

The goal is to find the thermally variable fluid density
and the variable fluid compressibility of the fluid den-
sity function written in the following form

(2-12)

where no effects in the fluid density from concentration
of a component are taken in account.

For purposes of implementation in FEFLOW, we
consider a Taylor series expansion for the fluid density
around  and  where a 6th order approximation is
used for the temperature T and a 2nd order approxima-
tion is used for the pressure p, viz.,

ρo
f

ρo
f To Co po, ,( ) a po( )
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b po( )
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To

c po( )
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4
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Co
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6

+

+ + +

+ +

=

po
To 0 °C=

ρo
f To Co po, ,( ) a po( ) ao a1po a2po

2+ +

998.8396 [g/l]

= =

=

ρf ρo
f 1 γ T p,( )

variable expansion

p po–( ) β T p,( )

variable expansion

T To–( )–+=

     

To po
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By utilizing Eq. (2-8) we can calculate the above deriv- atives at  and  leading to the following equation:

(2-13)ρf T p,( ) ρf To po,( ) ρf( )
To po,
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2!
----- ρf( )

To po,
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Comparing the above equation with the EOS for the
fluid density Eq. (2-12) we finally obtain the expres-
ff
sion for computing the coefficient of thermal expansion
and the coefficient of compressibility, viz.,
(2-15)( )

( )

5 2 4 2 2
0 0 0 1 0 2 0 0 0 1 0 2 0 0 0 1 0 2

0

3 2 2 2 2
0 0 0 1 0 2 0 0 0 1 0 2 0 0 0 1 0 2

2 2 2 2
0 0 0 1 0 2 0 0 0 1 0 2 0 0 0

1( , ) ( - ) ( ) ( - ) 6 ( )

     ( - ) 5 ( ) 15 ( )

     ( - ) 4 ( ) 10 (

fT p T T g p g p g T T f p f p f T g p g p g

T T e pe p e T f p f p f T g p g p g

T T d pd p d T e pe p e T f p f

β
ρ

=− + + + + + + + + +

+ + + + + + + + +

+ + + + + + +( )
(

)

2 3 2
1 0 2 0 0 0 1 0 2

2 2 2 2 3 2
0 0 0 1 0 2 0 0 0 1 0 2 0 0 0 1 0 2 0 0 0 1 0 2

4 2
0 0 0 1 0 2

2 2 2
0 0 1 0 2 0 0 0 1 0 2 0 0 0 1

) 20 ( )

     ( - ) 3 ( ) 6 ( ) 10 ( )

              15 ( )

     2 ( ) 3 (

p f T g p g p g

T T c pc p c T d pd p d T e pe p e T f p f p f

T g p g p g

b pb p b T c pc p c T d pd

+ + + + +

+ + + + + + + + + + + +

+ + +

+ + + + + + +(
)

2 3 2
0 2 0 0 0 1 0 2

4 2 5 2
0 0 0 1 0 2 0 0 0 1 0 2

) 4 ( )

               5 ( ) 6 ( )

p d T e pe p e

T f p f p f T g p g p g

+ + + + +

+ + + + + 
and
(2-16)({ 2 3 4 5 6 6 5
0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2

0
4 2 3 2 3

0 2 0 2 0 2 0 2 0 2 0 2 0 2
2 2

0 2 0 2 0 2 0

1(T,p) = ( - ) ( - ) ( - ) ( 6 )

              ( - ) ( 5 15 ) ( - ) ( 4 10 20 )

              ( - ) ( 3 6 10

f p p a Tb T c T d T e T f T g T T g T T f Tg

T T e T f T g T T d Te T f T g

T T c Td T e T

γ
ρ

+ + + + + + + + + +

+ + + + + + +

+ + +

)
3 4

2 0 2

2 3 4 5
0 2 0 2 0 2 0 2 0 2 0 2

2 3 4
1 0 2 0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2

5 6 6
0 1 0 2 0 1 0 2 0 1 0 2

15 )

              ( - )( 2 3 4 5 6 )

     2 ( 2 ) ( 2 ) ( 2 ) ( 2 )

             ( 2 ) ( 2 ) ( - ) ( 2

f T g

T T b Tc T d T e T f T g

a pa T b pb T c pc T d pd T e pe

T f p f T g pg T T g pg

+ +

+ + + + + +

 + + + + + + + + + +
+ + + + + ( )

( )
( )

5
0 1 0 2 0 1 0 2

4 2
0 1 0 2 0 1 0 2 0 1 0 2

3 2 3
0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2

2
0 1 0 2 0

) ( - ) 2 6 ( 2 )

             ( - ) 2 5 ( 2 ) 15 ( 2 )

             ( - ) 2 4 ( 2 ) 10 ( 2 ) 20 ( 2 )

             ( - ) 2 3 (

T T f p f T g pg

T T e pe T f p f T g pg

T T d pd T e pe T f p f T g pg

T T c pc T d

+ + + + +

+ + + + + +

+ + + + + + + +

+ +( )
(

) }

2 3 4
1 0 2 0 1 0 2 0 1 0 2 0 1 0 2

2 3
0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2

4 5
0 1 0 2 0 1 0 2

2 ) 6 ( 2 ) 10 ( 2 ) 15 ( 2 )

             ( - ) 2 2 ( 2 ) 3 ( 2 ) 4 ( 2 )

               5 ( 2 ) 6 ( 2 )

pd T e pe T f p f T g pg

T T b pb T c pc T d pd T e pe

T f p f T g p g

+ + + + + + + +

+ + + + + + + +

+ + + 



OKO=bñíÉåÇÉÇ=blp
with  computed from (2-11) and the coefficients
 are given in Table 2.1.

The implementation of the extended form of EOS is
done in FEFLOW by using FEFLOW’s programming
interface IFM. Appendix B summarizes the steps of
implementation providing the IFM programming code
Beta_Gamma.c.
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Latin symbols

 concentration and reference
concentration (salinity),
respectively;
maximum concentration;
hydrodynamic fluid pressure and
reference pressure, respectively;
temperature and reference
temperature, respectively;

ρo
f

ai bi ci di ei fi gi, , , , , ,( )
i 0 1 2, ,=

C Co, ML 3–

Cs ML 3–

p po, ML 1– T 2–

T To, Θ
Greek symbols

1 solutal expansion coefficient;
thermal expansion coefficient;
fluid compressibility;
fluid density and reference fluid
density, respectively;

Subscripts

coefficient index;
chemical component;
reference value;
saturated;

Superscripts

fluid (water) phase;

Abbreviations

API application programming interface;
EOS equation of state;
IFM interface manager;
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α
β Θ 1–

γ M 1– LT2

ρf ρo
f, ML 3–
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k
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Sat
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In this appendix we will describe how to implement
in FEFLOW the equations we have derived for the
coefficient of thermal expansion and compressibility
through the IFM programming interface.

Goal

Our goal is to incorporate in FEFLOW the following
extended EOS 

(B1)

in order to reproduce the fluid density for a wide range
of temperature and pressure (  MPa and

). This is important for modeling heat
transfer in deep geothermal reservoirs where high tem-
perature and pressure have to be involved in the simu-
lations.

For this purpose Eq. (B1) must include the equa-
tions for  and  derived in the previous
section (Eqs. (2-15) and (2-16)), which, for simplicity,
will be referred henceforth to freshwater condition
(  g/l) at the atmospheric pressure (
kPa) and at triple point temperature ( ), i.e.,

ρf ρo
f 1 β T To–( )– γ T p,( ) p po–( )

α
Cs Co–( )

----------------------- C Co–( )

+

+









=

pSat p 100≤<
0 T 350 °C≤ ≤

β T p,( ) γ T p,( )

Co 0= po 100=
To 0 °C=
ff
(B2)

and

(B3)

where  and the coeffi-
cients are given in Tab. 2.1.

We remind that in FEFLOW the following EOS for
the fluid density is already incorporated, viz.,

(B4)

Equation to implement

For achieving our goal, we will implement in the
EOS (B4) an external module coding the new expres-

β T p,( ) 1
ρo

f
-----– T5 go pog1 po

2g2+ +( )

T4 fo pof1 po
2f2+ +( ) T3 eo poe1 po

2e2+ +( )

+

+

T2 do pod1 po
2d2+ +( ) T co poc1 po

2c2+ +( )

bo pob1 po
2b2+ +( )

+

+ +

[

]

=

γ T p,( ) 1
ρo

f
----- p po–( ) a2 T6g2 T5f2 T4e2
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+ + + +

+ +

(

) a1 2poa2 T6 g1 2pog2+( )
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T2 c1 2poc2+( ) T b1 2pob2+( )

+ + + +

+ + +

+

[

]

=

ρo
f To Co po, ,( ) 998.8396 g/l=

ρf ρo
f 1 β T To–( )– α

Cs Co–( )
----------------------- C Co–( )+ 

 =
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sion of  (B2) and  (B3). The implementa-
tion of  can be done directly by the use of the
IFM through the API IfmSetMatFlowExpan-
sionCoeff. On the other hand, since the EOS for the
fluid density present in FEFLOW (B4) does not take in
account the coefficient of compressibility , no
related API interface exists for this coefficient, hence
it's not possible to implement directly the expression
for  (B3) into (B4). Therefore, to make up for
this lack, we have to use a little trick:

Let's consider the EOS for the fluid density that we
want to incorporate into FEFLOW (B1) and apply a
simple factorization in the following way:

(B5)

with

(B6)

and ,  expressed in Eq. (B2) and Eq.
(B3), respectively.

In this way, we have defined a new variable,
, which takes in account the coefficient of ther-

mal expansion  and compressibility  and

β T p,( ) γ T p,( )
β T p,( )

γ T p,( )

γ T p,( )

ρf ρo
f 1 β T p,( ) T To–( )– γ T p,( ) p po–( ) α

Cs Co–( )
----------------------- C Co–( )+ + 

 =

 ρo
f 1 β T p,( ) γ T p,( )

p po–( )
T To–( )

-------------------– 
  T To–( )– α

Cs Co–( )
----------------------- C Co–( )+=

 ρo
f 1 β∗ T p,( ) T To–( )– α

Cs Co–( )
----------------------- C Co–( )+ 

 =

β∗ T p,( )

defined as BETASTAR
in the source code

β T p,( )

defined as BETA
in the source code

γ T p,( )
p po–( )
T To–( )

-------------------- T To≠,

defined as GAMMASTAR
in the source code

–=       

      

β T p,( ) γ T p,( )

β∗ T p,( )
β T p,( ) γ T p,( )
that can be directly implemented in the EOS of the
fluid density present in FEFLOW (B4) through the API
IfmSetMatFlowExpansionCoeff leading to the
EOS (B1).

Description of the source code Beta_Gamma.c
The input data required by the IfmSetMat-

FlowExpansionCoeff function are the tempera-
ture  and pressure  of each element of the FE mesh.
These values can be calculated by the use of the API
functions IfmGetResultsTransportHe-
atValue and IfmGetResultsFlowPressure-
Value, which load respectively the nodal values of the
temperature and pressure calculated from the simula-
tions. Once the code has derived the mean temperature
and mean pressure of each element of the grid, by sum-
ming the nodal values of the considered physical
parameters and then dividing by the number of nodes
of the element, it calculates  using Eq. (B6)
and then set its value into the API function IfmSet-
MatFlowExpansionCoeff.

Below the complete source code Beta_Gamma.c
is attached. The code is programmed in C language
through the IFM tool in the Simulation interface
under the callback function PostTimeStep.

static void PostTimeStep (IfmDocument pDoc)
{
  int    e, i;
  double T, p, A, B;
  double beta, gammastar, BETASTAR;
      
  /* Coefficients for the fitting and its derivatives */
  /* Useless a0 = 9.99792877961606e+02; */
  double a1 = 5.07605113140940e-04;
  double a2 = -5.28425478164183e-10;
  double b0 = 5.13864847162196e-02;
  double b1 = -3.61991396354483e-06;

T p

β∗ T p,( )
cbcilt=ö=ON
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  double b2 = 7.97204102509724e-12;
  double c0 = -7.53557031774437e-03;
  double c1 = 6.32712093275576e-08;
  double c2 = -1.66203631393248e-13;
  double d0 = 4.60380647957350e-05;
  double d1 = -5.61299059722121e-10;
  double d2 = 1.80924436489400e-15;
  double e0 = -2.26651454175013e-07;
  double e1 = 3.36874416675978e-12;
  double e2 = -1.30352149261326e-17;
  double f0 = 6.14889851856743e-10;
  double f1 = -1.06165223196756e-14;
  double f2 = 4.75014903737416e-20;
  double g0 = -7.39221950969522e-13;
  double g1 = 1.42790422913922e-17;
  double g2 = -7.13130230531541e-23;
  /* Reference pressure is 100kPa while
     REFERENCE TEMPERATURE IS 0!!! */  
  double p0 = 100.;
        
  /* Useless ap0 = a0+a1*p0+a2*p0*p0; */
  double bp0 = b0+(b1+b2*p0)*p0;
  double cp0 = c0+(c1+c2*p0)*p0;
  double dp0 = d0+(d1+d2*p0)*p0;
  double ep0 = e0+(e1+e2*p0)*p0;
  double fp0 = f0+(f1+f2*p0)*p0;
  double gp0 = g0+(g1+g2*p0)*p0;

  double gam0 = a1+2*a2*p0;
  double gam1 = b1+2*b2*p0;
  double gam2 = c1+2*c2*p0;
  double gam3 = d1+2*d2*p0;
  double gam4 = e1+2*e2*p0;
  double gam5 = f1+2*f2*p0;
  double gam6 = g1+2*g2*p0;

  /* Number of elements and number of nodes */
  int nElements = IfmGetNumberOfElements(pDoc);
  int nNodes    = IfmGetNumberOfNodesPerElement(pDoc);
        
  /* Loop through all elements */
  for (e = 0; e < nElements; e++) { 
    T = 0.;
    p = 0.;

    /* Loop locally through all nodes of this element */
    for (i = 0; i < nNodes; i++) {
      /* Get global node index */
      int indNode = IfmGetNode(pDoc, e, i);

      T += IfmGetResultsTransportHeatValue(pDoc,indNode);
      p += IfmGetResultsFlowPressureValue(pDoc,indNode);
    }
  
    /* Solving the average physical properties (T and p)
       of this element */
    T /= (double)nNodes;
    p /= (double)nNodes;   
         
    if (p < 100) p = 100;
    A = gam0 +
       (gam1+(gam2+(gam3+(gam4+(gam5+gam6*T)*T)*T)*T)*T)*T;
ff
    B = a2+(b2+(c2+(d2+(e2+(f2+g2*T)*T)*T)*T)*T)*T;

    /* Set BETA */
    beta = -(1/999.843633188666)*
            (bp0+(cp0+(dp0+(ep0+(fp0+gp0*T)*T)*T)*T)*T);

    /* Set GAMMA */
    gammastar = -(1/999.843633188666)*(A+B*(p-p0))/(T+.1);

    /* Set BETASTAR */
    BETASTAR = beta + gammastar;
    IfmSetMatFlowExpansionCoeff(pDoc, e, BETASTAR);
    /* IfmInfo(pDoc, "Beta and gamma: %g  \n", BETASTAR); */  
  }
}

Validation of the code

We remind that the equations for  (B2) and
 (B3) are derived from the following polynomial

fitting:

(B7)

with the temperature T in  and, the pressure p in kPa
and the coefficients for freshwater are given in Tab.
2.1.

For validating the source code, we will run a verti-
cal 2D coupled heat transport and fluid flow problem
(i.e., ) with the implemented Beta_Gamma
module activated in order to compare the fluid density
calculated from this simulation (B5) with the one pro-
vided by the polynomial fitting (B7). The code is valid
only if these values coincide.

The conceptual model used for the coupled simula-
tion is a 3.5 x 3.5 km square. The rectangular mesh is
composed by 9 elements. At the top, a constant temper-
ature of 10 °C and a head value of 0 m are set as bound-

β T p,( )
γ T p,( )

ρf T p,( ) a p( ) b p( )T c p( )T2 d p( )T3 e p( )T4

              f p( )T5 g p( )T6
+ + + +

+ +
=

in  [kg/m3]
0 T 350 °C  and  pSat p 100 MPa≤<≤ ≤

°C

α 0=
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ary conditions while at the bottom a constant
temperature of 150 °C is set. 

The temperature and the pressure are calculated by
the simulation for each node of the considered element.
The implemented Beta_Gamma module derives the
elemental mean value of these physical parameters and
uses them as input data for returning the value of
BETASTAR of each element of the mesh by the use of
(B6). Results are shown in Fig 2.3.

For simplicity, we will focus our attention on the
central element of the mesh. The mean temperature and
pressure for this element are 79.9 °C and 1.7 x 104 kPa
respectively. The Beta_Gamma module returns a
value of BETASTAR equal to 3.502 x 10-4 K-1 which
leads to a fluid density equal to 979.245887 kg/m3

(B5). On the other hand, by replacing the calculated
mean temperature and pressure in the polynomial fit-
ting (B7) we obtain a fluid density equal to 979.245892
kg/m3 which validates our code.

Important remarks

(1) Since the module implements the EOS of the fluid
density referred to freshwater condition (  g/l) at
the atmospheric pressure (  kPa) and at triple
point temperature ( ), it is fundamental to set
these reference values in the FEFLOW menu for run-
ning the simulations.

(2) Referring to (B6), users must be aware that the tem-
perature involved in the simulations must differ from
the reference temperature set in the source code, i.e.,

, for avoiding numerical instabilities during
the calculations.

Co 0=
po 100=

To 0 °C=

To 0 °C=

Figure 2.3 Calculated pressure (a) and temperature (a)
input data and returned BETASTAR (c) by the use of the
Beta_Gamma module.

a)

b)

c)
cbcilt=ö=OP
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For the solution of the sparse matrix systems result-
ing from the finite element discretization (grid, mesh)
in 2D or 3D space either iterative or direct equation
solvers must be applied. FEFLOW provides a family of
different iterative solvers (Fig. 3.1), where the precon-
ditioned conjugate gradient method (PCG) for symmet-
ric matrices and the preconditioned Lanczos bi-
conjugate gradient stable method (BiCGSTAB) for
unsymmetric matrices are the standard options in solv-
ing large equation systems. These solvers show fast
convergence and have proven efficient for typical prob-
lems over a wide range of applications in subsurface
flow and transport problems. However, they also have
some weaknesses and difficulties can occur, particu-
larly if

• the spatial discretization is very heterogeneous,
where the mesh is locally very dense while coarser
parts exist elsewhere,

• the mesh refinement is generally very high,
• the mesh is distorted,
• the parameter contrast is high or very high,
• the angles of a triangular mesh are not optimal,
e.g., high parameter contrasts occur at obtuse-
angled triangles,

• poor initial estimations for the solution exist, e.g.,
for large timesteps or steady-state conditions. 

Any of these complications can result in a significant
increase of the required number of iterations. In other
’pathological’ cases the iterative solvers can fail com-
pletely (no convergence) and direct Gaussian-based
equation solvers would then be the only way out;
unfortunately, they are rather improper for 3D prob-
lems.

As a consequence, a better and more efficient alter-
native should be available. This is now the case - the
Algebraic Multigrid (AMG) solution technique, imple-
mented and optimized in the SAMG solver4,6, is incor-
porated in FEFLOW (starting with release 5.1). In the
following the SAMG solution technique is briefly char-
acterized and its usefulness and efficiency are shown in
a number of typical applications. Comparisons with the
standard solutions will be given.
P
rëáåÖ=~åÇ= íÉëíáåÖ= íÜÉ=~äÖÉÄê~áÅ=ãìäíáÖêáÇ=Éèì~J
íáçå=ëçäîÉê=p^jd=áå=cbcilt
H.-J. G. Diersch

WASY Institute for Water Resources Planning and Systems Research, Berlin, Germany
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A finite-element problem requires the solution of
the following linear (or linearized) sparse algebraic
equations

(3-1)

Figure 3.1 Currently available FEFLOW equation solvers
and default settings.

Ax b=
ff
where  is the sparse matrix,  the solution vector,
and  the right-hand side. Standard iterative equation
solvers, such as the PCG method, are so-called one-
level strategies, where the matrix system (3-1) is solved
for the given discretization grid as it is. In contrast,
multigrid techniques4 concern a family of efficient
solution strategies that represent hierarchical multi-
level algorithms. They combine the numerical informa-
tion resulting from a hierarchy of increasingly coarse
grids.

A multigrid method which operates on predefined
grid hierarchies is called geometric multigrid, which is
the traditional multi-level strategy. Unfortunately, the
geometric multigrid method is restricted to hierarchi-
cally organized gridding. Commonly, meshes (grids)
resulting from finite-element discretizations can be
rather complex and thus are not generally suitable for
geometric-hierarchical grid organization.

As a powerful alternative to the geometric multigrid
method, there is the so-called algebraic multigrid
method, where a reasonable hierarchy of grids is auto-
matically constructed based on the algebraic informa-
tion explicitly and implicitly contained in the
discretization matrix . An algebraic multigrid
requires only the matrix  and the right-hand side  as
they result from the finite-element discretization; no
specific geometric information is needed. This makes
algebraic multigrid very attractive for finite elements.

An algebraic multigrid (AMG) is a hierarchical,
matrix-based approach. Rather than on a hierarchy of
grids, AMG operates on a hierarchy of increasingly
smaller linear systems of equations which are con-

A x
b

A
A b
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structed fully automatically. In particular, the construc-
tion of matrices used to transfer information between
different levels (restriction of residuals and interpola-
tion of corrections) is based on matrix entries, and
matrices on coarser levels are computed based on the
so-called Galerkin principle (Galerkin matrices). This
automatism is the major reason for AMG’s flexibility
in adapting itself to specific requirements of the prob-
lem to be solved and for its robustness in solving large
classes of problems despite using very simple
smoothers6.

AMG is a two-part process. The first part, a fully
automatic setup phase, consists of recursively choosing
the coarser levels and defining the transfer and coarse-
grid operators. The second part, the solution phase, just
uses the resulting components in order to perform nor-
mal multigrid cycling until a desired level of conver-
gence is reached. It usually involves Gauss-Seidel
relaxation for smoothing. 

PKOKO `ç~êëÉåáåÖ

The coarsening strategy is the most tricky part in
AMG. Because the matrix  is a result of a finite-ele-
ment discretization of governing partial differential
equations, AMG can take into account that the matrix
entries are small stencils. A standard coarsening is
based on a direct coupling of the matrix elements. A
strong connectivity is here a negative coupling in .
However, the direct connection can cause a relatively
high complexity and an aggressive coarsening should
be preferred which is based on the concept of long-
range strong connections. Unfortunately, in finite ele-
ment discretizations it cannot always be assumed that

A

Aij
the strongest coupling is negative. Matrices  can
occur which also contain strong positive entries.

PKOKP mêÉÅçåÇáíáçåáåÖ

Recently, it has become very popular to use multi-
grid not as a stand-alone solver but rather combine it
with acceleration methods such as conjugate gradient
or BiCGSTAB. Experience has shown that AMG can
also be a very good preconditioner, much better than
standard (one-level) ILU-type preconditioners. This is
mainly due to the fact that AMG, in contrast to any one-
level preconditioner, efficiently operates on all error
components, short-range as well as long-range.

PKOKQ p^jd=ëçäîÉê=é~Åâ~ÖÉ

Although the origin of AMG dates back to the early
eighties1,3 it still provides one of the most attractive
algebraic approaches. Substantial progress has been
achieved5. Today’s best and most complete AMG solu-
tion strategies are available in the commercial software
package SAMG6. SAMG has been developed by the
AMG pioneer K. Stüben and its group at the Fraunhofer
Institute for Algorithms and Scientific Computing
(SCAI), St. Augustin, Germany. SAMG is much more
advanced than its academic, non-commercial forerun-
ner, known as AMG1R5 in the scientific community.
SAMG is a result of Stüben’s long-term experiences
and efforts in the AMG research. It is still being contin-
uously developed, extended and improved. SAMG’s
usefulness and efficiency has been proven in many
practical applications4 in the field of solid and fluid
mechanics.

A
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Starting with the FEFLOW release 5.1 the commer-
cial SAMG solver is available as an additional option
in the solver settings (Fig. 3.1). It requires an extra
license in FEFLOW at a low additional cost. A prop-
erty dialog allows editing of the SAMG solver options.
The defaults are chosen to be suited for typical
FEFLOW flow problems. In the dialog, the most
important solver parameters and options can be edited.
Their naming is consistent with the SAMG user’s
manual6 to which the user is referred for a more
detailed explanation of the options:

• iteration stop criterion, default is ;
• types of cycling and acceleration (in the SAMG

manual6 termed as ncyc), default value is 12050,
i.e., a V-cycle with preconditioner BiCGSTAB, at
most 50 iterations;

• a general control switch for secondary parameters
(in the SAMG manual6 termed as n_default),
by default the switch is not set and allows the
specification of the coarsening strategy and matrix
property via option menus (see below). Alterna-
tively, if the switch is set the user can directly
enter the n_default parameter as coded in
SAMG’s user’s manual6 to control the options
manually;

• in case the control switch is not set the coarsening
strategy can be chosen as standard (default) or
aggressive;

• in case the control switch is not set the matrix
property can be ill-posed (default) or well-posed,
where the ill-posedness means that also positive

10 8–
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strong matrix entries are allowed (see section
3.2.2);

• a quiet toggle, if set (default), suppresses all print
output produced by SAMG; reset the toggle if
information should be printed in FEFLOW’s log
window;

• a toggle can be set (by default it is unset) to dump
the complete matrix system; this is only useful for
analyzing SAMG via tools available to the devel-
oper.

PKP mÉêÑçêã~åÅÉ=qÉëíë

In the following we test the performance of SAMG
against the standard PCG for selected flow problems in
two and three dimensions. We start with a more sys-
tematic study for representative theoretical examples
and will also consider more complex practical applica-
tions. The SAMG solver is normally used with its stan-

Figure 3.2 SAMG options available in FEFLOW’s iter-
ation-solver properties dialog.
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dard options as indicated in section 3.2.5. Different
options settings will be indicated in the examples if
useful.

For steady-state problems the iterations are always
started with . The stop criterion both for SAMG
and for PCG is . The measured CPU times are for
a notebook with 1.8 GHz clock speed, 512 MB RAM
and MS Windows XP (Version 2002, Service Pack 1).
The performance measurements are obtained by using
FEFLOW’s time recording tool. The executable and
libraries are compiler-optimized.

PKPKN aìêäçÑëâó=éêçÄäÉã

Durlofsky2 studied a square domain with a log-con-
ductivity field and boundary conditions as shown in
Fig. 3.3. The flow enters on the left and exits on the
right side of the domain. The remaining boundaries are
impervious.

The problem is steady-state and is characterized by
a structured regular gridding with a heterogeneous con-
ductivity distribution. The parameter contrast refers to
a power of six. The domain is initially discretized by a
20 x 20 square quadrilateral mesh, which represents the
starting (first) refinement . We will test the matrix
solution performances for a stepwise global refinement
of the mesh according to

(3-2)

where  is the refinement level and  is the maximum
level (here, 6). In the global refinement of the mesh
each quadrilateral is subdivided into four equally sized

x 0=
10 8–

ϒo

ϒl l 0 1 … L, , ,=

l L
quadrilaterals. The number of quadrilaterals NE and
number of nodes NP then increase according to the
refinement level :

(3-3)

The obtained performance results are summarized
in Tab. 3.1. It clearly indicates the superiority of the
SAMG solver to the standard PCG for this problem
once the matrices enlarge. For large problems, in the
order of 105 or 106 equations, SAMG is more than ten
times faster than PCG. It is important to note that
SAMG does not increase the required number of itera-
tion cycles if the problem enlarges, while the number
of iterations required for the PCG solver significantly
increases with the growing refinement level .

l 0 1 …, ,=

NE 202 4l⋅=

NP NE 1+( )
2

20 4l 2⁄ 1+⋅( )
2

= =

l

Figure 3.3 2D square test problem with a conductivity pat-
tern (red = 1 m/s; blue = 10-6 m/s), basic 20 x 20 mesh .ϒo

h = 0h = 1
cbcilt=ö=OV
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Table 3.1 Performance results for the Durlofsky problem refinement

PCG SAMG
CPU-ratio

PCG/SAMGnumber of 
iterations

CPU timea)

[sec]
number of 

cycles
CPU timea)

[sec]

0 400 441 21 0.0 4 0.0 -

1 1,600 1,681 58 0.0 4 0.1 -

2 6,400 6,561 117 0.3 4 0.2 1.50

3 25,600 25,921 229 2.2 4 0.7 3.14

4 102,400 103,041 456 18.3 4 2.9 6.31

5 409,600 410,881 903 162.2 4 12.3 13.19

6b) 1,638,400 1,640,961 1766 1320.9 4 54.2 24.37

a) encompasses matrix assembly, solution of the sparse equation system, and velocity computation
b) storage swapping partially occurred at this refinement level

l NE NP
PKPKO bñíêÉãÉ=ìåëíêìÅíìêÉÇ=ãÉëÜáåÖ

Let us consider a triangular mesh, which is locally
extremely dense as shown in Fig. 3.4. The domain has
a constant conductivity. In the dense-mesh location
there is a pumping well. The left and right boundaries
are subjected to a constant hydraulic-head condition.
The remaining boundaries are impervious. The prob-
lem is steady-state.

In the 2D case the mesh consists of 102,954 trian-
gles (NE) and 51,595 nodes (NP). The problem is also
extended to 3D by pentahedral prismatic elements,
where 10 layers of constant thickness are used. It
results in NE = 1,029,540 and NP = 567,545.

The obtained performances for SAMG and PCG are
compared in Tab. 3.2. It reveals that SAMG is signifi-
cantly faster in the 2D problem. However, for the 3D
problem PCG results a similar performance. Note that
SAMG becomes here somewhat faster when aggressive
coarsening is used instead of the standard coarsening
option.
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Figure 3.4 Unstructured triangular mesh with magnified view of the local dense part.
Table 3.2 Performance results for the extreme unstructured meshing problem

PCG SAMG
CPU-ratio

PCG/SAMGnumber of 
iterations

CPU timea)

[sec]
number of 

cycles
CPU timea)

[sec]

2D 356 9.5 5 2.2 4.32

3D 409 356.5
50b) 304.6 1.17

50c) 211.2 1.69

a) encompasses matrix assembly, solution of the sparse equation system, and 
velocity computation

b) standard coarsening, termination after 50 cycles
c) aggressive coarsening, termination after 50 cycles
cbcilt=ö=PN
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A more complex cross-sectional 2D problem is
shown in Fig. 3.5. The triangular mesh is fully unstruc-
tured and locally refined in a layered geometry. The
problem models an aquifer-aquitard system with heter-
ogeneous distribution of conductivity and storativity. 

We consider both a steady-state and a transient situ-
ation (Tab. 3.3). In Fig. 3.6 the CPU times are shown
for an adaptive time-stepping process starting from a
ff
constant initial solution. It reveals that PCG is superior
to SAMG if the timesteps are small and the solution is
not far from the distribution of the previous timestep
(PCG needs here only a small number of iterations),
which typically occurs at the beginning. However, as
the time stepping progresses, SAMG becomes clearly
superior to PCG because PCG requires significantly
more iterations if the change in the solution over each
timestep becomes larger. The overall CPU time for
SAMG is about three times smaller than for the PCG
method.
Figure 3.5 Triangular mesh with magnified view
used for the cross-sectional vertical problem (no
exaggeration): NE = 903,872, NP = 457,800.
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Table 3.3 Performance results for the cross-sectional problem

PCG SAMG
CPU-ratio

PCG/SAMGnumber of 
iterations

CPU timea)

[sec]
number of 

cycles
CPU timea)

[sec]

steady-state 1000b) 262.9 5 22.2 11.84

transient (one timestep)c) 2 6.3 0 4.7 1.34

transient (series of timesteps)d) - 739.5 - 209.2 3.53

a) encompasses matrix assembly, solution of the sparse equation system, and the velocity computation
b) stopped after 1000 iteration due to poor convergence
c) initial solution is very near the final solution
d) adaptive time stepping over 17 timesteps, starting with a constant initial distribution (see Fig. 3.6)
1 3 5 7 9 11 13 15 17 19
number of timesteps
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Figure 3.6 CPU times for the transient simulation of the
cross-sectional problem required for the PCG and SAMG
method.
PKPKQ qÜêÉÉJÇáãÉåëáçå~ä= éêçÄäÉã
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An unsteady 3D regional finite-element flow prob-
lem is tested as shown in Fig. 3.7. The mesh at a mod-
erate resolution consisting of 221,210 pentahedral
prismatic elements and 122,485 nodes is locally refined
yet, well-formed and the parameter contrast remains
moderate (conductivity ranges over five orders of mag-
nitude). It can be considered as a typical 3D transient
finite-element groundwater model used in practical
water resources simulations. Of specific interest here
are boundary conditions applied to rivers and pumping
wells that possess a short-term dynamic (e.g., pumping
capacity changes each day). The timesteps are automat-
ically controlled by FEFLOW’s adaptive predictor-cor-
rector technique.

For such a standard simulation task the PCG
cbcilt=ö=PP
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method remains clearly superior to the SAMG solvers
as can be seen from Fig. 3.8 and Tab. 3.4. For this type
of simulation SAMG needs more CPU time than the
PCG solver. Overall, PCG is here about three times
ff
faster. Even for a higher resolution of the mesh (e.g., by
using a global mesh refinement) the PCG solver is two
to three times faster than the SAMG method. 
Figure 3.7 Large-scale 3D flow model: NE = 221,210, NP = 122,485.
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Figure 3.8 CPU times required for the PCG (left) and SAMG (right) solvers in simulating the transient the 3D flow
problem (247 timesteps) at the mesh resolution NE = 221,210, NP = 122,485.
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Table 3.4 Performance results for the 3D problem 
with highly transient boundary conditions

PCG
total CPU timea)

 [sec]

SAMG
total CPU timea)

 [sec]

CPU-ratio
PCG/SAMG

1806 5724 0.32

a) encompasses matrix assembly, solution of the sparse equa-
tion system, and the velocity computation for 247 
timesteps
PKPKR qÜêÉÉJÇáãÉåëáçå~ä=Ä~ëáå=ãçÇÉä
ïáíÜ= îÉêíáÅ~ääó= ÇáëíçêíÉÇ= éêáëãë= ~í
Ñ~ìäíó=òçåÉë

The final performance test refers to a 3D large-scale
basin flow model. The pentahedral prismatic mesh with
a moderate resolution has to incorporate a number of
faulty zones, which leads to a vertical distortion of the
prisms along these locations as exhibited in Fig. 3.9.
The model is transient; fixed timesteps of 1 day are
used. The parameter contrast is three orders of magni-
tude.
Figure 3.9 3D basin model: NE = 123,726, NP = 83,056: a) 3D view, b) horizontal view on the prismatic mesh, c)
cross-section along indicated (red-colored) line (exaggeration 10 : 1).

a) b)

c)
cbcilt=ö=PR
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For this problem the PCG solver completely failed.
It was impossible to get convergent solutions below the
residual error criterion of . Continuing the simula-
tion in time, after a small number of timesteps the solu-
tion became fully instable. In contrast to the PCG, the
SAMG showed much better computational properties.
SAMG was able to solve the problem. However, it

10 8–
ff
should be noted that SAMG terminated after 50 cycles
at each timestep. Although the residual error could not
be reduced to the given error criteria of , the simu-
lation could be successfully continued in time with sta-
ble and sufficiently accurate solutions.

10 8–
Table 3.5 Performance results for the basin model problem

PCG SAMG
CPU-ratio

PCG/SAMGnumber of 
iterations

CPU timea)

[sec]
number of 

cycles
CPU timea)

[sec]

at each timestep of 1 day 2000b)

failed
131.2 50c)

stable
23.0 5.7

a) encompasses matrix assembly, solution of the sparse equation system, and the velocity computation
b) terminated after 2000 (maximum) iterations due to poor convergence, solution continuation fails
c) terminated at 50 (maximum) cycles, solution remains stable
PKQ `çåÅäìëáçåë

The algebraic multigrid solver SAMG is available
in FEFLOW for release 5.1 and higher. SAMG has
proven very powerful for difficult problems where the
standard PCG solver takes a large number of iterations
(poor convergence) or completely fails (divergence).
This is often the case if the mesh is extremely unstruc-
tured and highly locally refined, the shape of the ele-
ments is not optimal (bad-formed elements), the
parameter contrast is high, or the starting solution is far
from the final solution. In steady-state solutions SAMG
is generally the fastest and most robust solver. The
speed-up can be a factor of ten or more. The power of
SAMG increases with the number of equations (nodes).
For large problems SAMG can often beat the perfor-
mance of the standard PCG solver. However, for
unsteady simulations, where the problem is well-posed
and sufficiently smooth, PCG is usually faster due to its
smaller computational overhead and numerical sim-
plicity. 
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Latin symbols

 sparse system matrix;
right-hand side of matrix system;
hydraulic head, potential;
maximum refinement level;
refinement level;
solution vector;

Greek symbols

refinement at level l;

Abbreviations

AMG algebraic multigrid;
CPU central processing unit;
NE number of elements;
NP number of points (nodes);
PCG preconditioned conjugate gradient;

A
b
h
L
l
x

ϒl
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