
t^pv=pçÑíï~êÉ

cbcilt
cáåáíÉ=bäÉãÉåí=pìÄëìêÑ~ÅÉ=cäçï
C=qê~åëéçêí=páãìä~íáçå=póëíÉã

tÜáíÉ=m~éÉêë
sçäK=f

t  ̂p v GmbH

fåëíáíìíÉ=Ñçê
t~íÉê=oÉëçìêÅÉë=mä~ååáåÖ

~åÇ=póëíÉã ë= oÉëÉ~êÅÜ

o



`çéóêáÖÜí=åçíáÅÉW
kç=é~êí=çÑ=íÜáë=ã~åì~ä=ã~ó=ÄÉ=éÜçíçÅçéáÉÇI=êÉéêçÇìÅÉÇI=çê=íê~åëä~íÉÇ=ïáíÜçìí=ïêáííÉå=éÉêãáëëáçå=çÑ=íÜÉ=
ÇÉîÉäçéÉê=~åÇ=ÇáëíêáÄìíçê=t^pv=dãÄeK
`çéóêáÖÜí=EÅF=OMMR=t^pv=dãÄe=_Éêäáå=J=~ää=êáÖÜíë=êÉëÉêîÉÇK=
t^pv=~åÇ=cbcilt=~êÉ=êÉÖáëíÉêÉÇ=íê~ÇÉã~êâë=çÑ=t^pv=dãÄeK

t^pv=GmbH fåëíáíìíÉ=Ñçê=t~íÉê=oÉëçìêÅÉë=mä~ååáåÖ =~å Ç=póëíÉãë=oÉëÉ~êÅÜI===
t~äíÉêëÇçêÑÉê=píê~≈É=NMRI==aJNOROS=_ÉêäáåI=dÉêã~åó
mÜçåÉW=HQVJPMJST==VV=VUJMI=c~ñW=HQVJPMJST=VV=VUJVV
bJj~áäW=ã~áä]ï~ëóKÇÉ
áá=ö=tÜáíÉ=m~éÉêë=J=sçäK=f



`çåíÉåíë
`çåíÉåíë

NK=lå=íÜÉ=éêáã~êó=î~êá~ÄäÉ=ëïáíÅÜáåÖ=íÉÅÜåáèìÉ=Ñçê=ëáãìä~íáåÖ=ìåë~íìê~íÉÇJë~íìJ
ê~íÉÇ=Ñäçïë =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K V

NKN= fåíêçÇìÅíáçå=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KV
NKO= _~ëáÅ=bèì~íáçåë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNN
NKP= cáåáíÉ=bäÉãÉåí=cçêãìä~íáçå K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNP
NKQ= qÉãéçê~ä=aáëÅêÉíáò~íáçå =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNQ
NKR= mêáã~êó=s~êá~ÄäÉ=pïáíÅÜáåÖ=jÉíÜçÇçäçÖó=K=K=K=K=K=K=KNR
NKS= pçäìíáçå=`çåíêçä=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNU
NKSKN= ^Ç~éíáîÉ=éêÉÇáÅíçêJÅçêêÉÅíçê=çåÉJëíÉé=kÉïíçå=

Em`lpkF=íáãÉ=ã~êÅÜáåÖ=ëÅÜÉãÉ =K=K=K=K=K=K=K=K=K=K=K=K=KNU
NKSKO= q~êÖÉíJÄ~ëÉÇ=Ñìää=kÉïíçå=Eq_ckF=íáãÉ=ëíÉééáåÖ=

ëÅÜÉãÉ K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOO
NKSKP= `çåîÉêÖÉåÅÉ=ÅêáíÉêáçåK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOP
NKT= réëíêÉ~ã=tÉáÖÜíáåÖK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOQ
NKU= páãìä~íáçåë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOR
NKUKN= fåÑáäíê~íáçå=áå=ÜçãçÖÉåÉçìë=~åÇ=áåÜçãçÖÉåÉçìë=ëçáä=

Åçäìãåë=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOS
NKUKNKN= `Éäá~=Éí=~äKÛë=éêçÄäÉã =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOS
NKUKNKO= s~å=dÉåìÅÜíÉåÛë=éêçÄäÉãK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KPN
NKUKO= aê~áå~ÖÉ=çÑ=~=îÉêó=Åç~êëÉ=ã~íÉêá~äK=K=K=K=K=K=K=K=K=K=K=K=KPS

NKUKP= mÉêÅÜÉÇ=ï~íÉê=í~ÄäÉ=éêçÄäÉãK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= PV
NKUKQ= fåÑáäíê~íáçå=áå=~=ä~êÖÉ=Å~áëëçå =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= QO
NKUKQKN= cçêëóíÜ=Éí=~äKÛë=éêçÄäÉã K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= QO
NKUKQKO= cçêëóíÜ=~åÇ=hêçéáåëâáÛë=éêçÄäÉã =K=K=K=K=K=K=K=K=K=K=K=K=K= QS
NKUKR= `~éáää~êó=Ä~êêáÉê=ãçÇÉäáåÖ K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= RM
NKUKRKN= tÉÄÄÛë=éêçÄäÉã=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= RM
NKUKRKO= cçêëóíÜ=~åÇ=hêçéáåëâáÛë=éêçÄäÉã =K=K=K=K=K=K=K=K=K=K=K=K=K= RQ
NKV= `äçëìêÉ =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= RV

^ÅâåçïäÉÇÖÉãÉåíë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= SN
oÉÑÉêÉåÅÉë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= SN
^ééÉåÇáñ=^=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= SP
g~ÅçÄá~å==Ñçê=íÜÉ=éêÉëëìêÉ=ÜÉ~Ç==~ë=éêáã~êó=î~êá~ÄäÉSP
^ééÉåÇáñ=_=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= SR
g~ÅçÄá~å==Ñçê=íÜÉ=ë~íìê~íáçå==~ë=éêáã~êó=î~êá~ÄäÉ K=K= SR
^ééÉåÇáñ=` K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= SS
`ÜçêÇ=ëäçéÉ=~ééêçñáã~íáçåë=çÑ=ë~íìê~íáçå=ÇÉêáî~íáîÉë
=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= SS

OK=qêÉ~íãÉåí=çÑ=ÑêÉÉ=ëìêÑ~ÅÉë=áå=Oa=~åÇ=Pa=ÖêçìåÇï~íÉê=ãçÇÉäáåÖ =K=K=K=K=K=K=K=K=K ST

kçãÉåÅä~íìêÉK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KST
OKN= fåíêçÇìÅíáçå=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KSV
OKO= dçîÉêåáåÖ=bèì~íáçåëK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KTN
OKP= fåáíá~äI=_çìåÇ~êó=~åÇ=`çåëíê~áåí=`çåÇáíáçåë =K=K=K=K=KTP
OKPKN= fåáíá~ä=ÅçåÇáíáçåë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KTP
OKPKO= pí~åÇ~êÇ=ÄçìåÇ~êó=ÅçåÇáíáçåë =K=K=K=K=K=K=K=K=K=K=K=K=K=K=KTP
OKPKP= Ûaê~áå~ÖÉÛ=Öê~ÇáÉåíJíóéÉ=ÄçìåÇ~êó=ÅçåÇáíáçåë =K=K=KTQ
OKPKQ= cêÉÉ=ëìêÑ~ÅÉ=ÄçìåÇ~êó=ÅçåÇáíáçåë=K=K=K=K=K=K=K=K=K=K=K=K=KTQ
OKPKR= pÉÉé~ÖÉ=Ñ~ÅÉ=ÄçìåÇ~êó=ÅçåÇáíáçåë=K=K=K=K=K=K=K=K=K=K=K=KTR
OKPKS= pìêÑ~ÅÉ=éçåÇáåÖ=ÄçìåÇ~êó=ÅçåÇáíáçå =K=K=K=K=K=K=K=K=K=KTR
OKPKT= `çåëíê~áåíë=çÑ=ÄçìåÇ~êó=ÅçåÇáíáçåëK=K=K=K=K=K=K=K=K=K=K=KTS
OKQ= cáåáíÉ=bäÉãÉåí=cçêãìä~íáçåë =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KTT

OKR= _^pa=E_ÉëíJ^Ç~éí~íáçåJíçJpíê~íáÖê~éÜáÅ=a~í~F=K=K=K= TV
OKS= mëÉìÇçJråë~íìê~íÉÇ=jçÇÉäáåÖ=^ééêç~ÅÜK=K=K=K=K=K=K= UP
OKT= ^ééäáÅ~íáçåëK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= UQ
OKTKN= jçáëíìêÉ=Çóå~ãáÅë=áå=ÜçãçÖÉåÉçìë=~åÇ=ä~óÉêÉÇ=ëçáäë

=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= UQ
OKTKO= aê~áå~ÖÉ=ÉñéÉêáãÉåí K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= UU
OKTKP= a~ã=ëÉÉé~ÖÉK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= VM
OKTKQ= dÉåÉêáÅ=éáí=ÑäççÇáåÖ=íÉëí=Å~ëÉK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= VO
OKTKR= oÉ~äJëáíÉ=ãáåáåÖ=éêçÄäÉãë=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= VQ
OKU= `äçëìêÉ =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= VU

oÉÑÉêÉåÅÉë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= VV
cbcilt=ö=ááá



`çåíÉåíë
PK=bêêçê=éêçé~Ö~íáçå=áå=íÜÉ=kÉïíçåJÄ~ëÉÇ=ëçäìíáçå=Åçåíêçä=çÑ=ìåë~íìê~íÉÇ=Ñäçï
K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= NMN

PKN= fåíêçÇìÅíáçå=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNMN
PKO= jçÇÉä=bèì~íáçåë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNMO
PKP= kÉïíçå=jÉíÜçÇ=~åÇ=mspq=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNMO
PKQ= qÜÉ=káííóJdêáííóK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNMP
PKR= ^å~äóíáÅ~ä=pçäìíáçå =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNMQ
PKS= qÉëí=`~ëÉ =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNMQ

PKSKN= kÉïíçå=Åçåíêçä=Äó=íÜÉ=ÇÉîá~íçêó=Éêêçê=ÅêáíÉêáçå=EPJVF
=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=NMQ

PKSKO= kÉïíçå=Åçåíêçä=Äó=íÜÉ=êÉëáÇì~ä=Éêêçê=ÅêáíÉêáçå=EPJNMF
=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=NMR

PKT= `çåÅäìëáçåë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=NMS
oÉÑÉêÉåÅÉë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=NMS

QK=̂ =ëÜçÅâJÅ~éíìêáåÖ=ÑáåáíÉJÉäÉãÉåí=íÉÅÜåáèìÉ=Ñçê=ìåë~íìê~íÉÇJë~íìê~íÉÇ=Ñäçï=~åÇ=
íê~åëéçêí=éêçÄäÉãë=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= NMV

QKN= fåíêçÇìÅíáçå=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNMV
QKO= pÜçÅâ=`~éíìêáåÖ=qÉÅÜåáèìÉ =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNNM
QKP= fãéäÉãÉåí~íáçå =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNNN
QKQ= kìãÉêáÅ~ä=oÉëìäíë=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNNO
QKQKN= eççéÉë=~åÇ=e~êäÉã~ååÛë=íïç=ïÉää=éêçÄäÉã =K=K=K=KNNO

QKQKO= páåâáåÖ=çÑ=~=ÜÉ~îó=ëçäìíÉ=áå=~=ÚëÉ~äÉÇ=ÄçñÛ K=K=K=K=K=NNP
QKQKP= fåÑáäíê~íáçå=áåíç=~å=áåáíá~ääó=Çêó=êÉÖáçå K=K=K=K=K=K=K=K=K=NNQ
QKR= `çåÅäìëáçåë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=NNR

oÉÑÉêÉåÅÉë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=NNR

RK=bêêçê=åçêãë=ìëÉÇ=áå=cbciltK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= NNT

RKN= bêêçêë=~åÇ=jÉ~ëìêÉë =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNNT
RKO= bêêçêë=aÉêáîÉÇ=Ñçê=kìãÉêáÅ~ä=pÅÜÉãÉëK=K=K=K=K=K=K=K=KNNT
RKOKN= bìÅäáÇÉ~å=iO=áåíÉÖê~ä=oççí=jÉ~å=pèì~êÉ=EojpF=Éêêçê=

åçêãK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNNU

RKOKO= ^ÄëçäìíÉ=iN=áåíÉÖê~ä=Éêêçê=åçêã K=K=K=K=K=K=K=K=K=K=K=K=K=NNU
RKOKP= j~ñáãìã=i=Éêêçê=åçêã K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=NNU
RKOKQ= kçêã~äáò~íáçå=Äó=ìëáåÖ=íÜÉ=ã~ñáãìã=èì~åíáíó= =NNV

SK=^Äçìí=íÜÉ=ÇáÑÑÉêÉåÅÉ=ÄÉíïÉÉå=íÜÉ=ÅçåîÉÅíáîÉ=Ñçêã=~åÇ=íÜÉ=ÇáîÉêÖÉåÅÉ=Ñçêã=çÑ=
íÜÉ=íê~åëéçêí=Éèì~íáçå =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= NON

SKN= _~ëáÅ=qê~åëéçêí=bèì~íáçå K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNON
SKO= pí~åÇ~êÇ=_çìåÇ~êó=`çåÇáíáçåë K=K=K=K=K=K=K=K=K=K=K=K=K=KNON
SKP= tÉ~â=cçêã=çÑ=íÜÉ=`çåîÉÅíáîÉ=cçêã=ESJOF=K=K=K=K=K=KNOO
SKQ= tÉ~â=cçêã=çÑ=íÜÉ=aáîÉêÖÉåÅÉ=cçêã=ESJNF K=K=K=K=K=KNOP
SKR= ^Çî~åí~ÖÉë=îëK=aáë~Çî~åí~ÖÉëK=K=K=K=K=K=K=K=K=K=K=K=K=K=KNOQ

SKS= e~åÇäáåÖ=çÑ=lìíÑäçïáåÖ=_çìåÇ~êáÉë=Ñçê=íÜÉ=aáîÉêJ
ÖÉåÅÉ=cçêã K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=NOQ

SKT= ^å=bñ~ãéäÉ K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=NOS
oÉÑÉêÉåÅÉë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=NPO

TK=^Äçìí=íÜÉ=Ñçêãìä~íáçå=çÑ=ÜóÇê~ìäáÅ=ÜÉ~Ç=ÄçìåÇ~êó=EéçíÉåíá~äF=ÅçåÇáíáçåë=Ñçê=
ÑäìáÇ=ÇÉåëáíóJÇÉéÉåÇÉåí=ÖêçìåÇï~íÉê=éêçÄäÉãë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= NPP
áî=ö=tÜáíÉ=m~éÉêë=J=sçäK=f



`çåíÉåíë
TKN= mêçÄäÉã=aÉëÅêáéíáçå K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNPP
TKO= qÜÉ=oÉÑÉêÉåÅÉ=eóÇê~ìäáÅ=mçíÉåíá~ä K=K=K=K=K=K=K=K=K=K=K=KNPQ
TKP= oÉÑÉêÉåÅÉ=mçíÉåíá~ä=Ñêçã=jÉ~ëìêÉÇ=eÉ~ÇëK=K=K=K=K=KNPQ
TKQ= eóÇêçëí~íáÅ=`çåÇáíáçå K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNPR
TKR= bñ~ãéäÉë =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNPS

TKRKN= _çìåÇ~êó=ïáíÜ=Åçåëí~åí=ÇÉåëáíóK=K=K=K=K=K=K=K=K=K=K=K=K= NPS
TKRKO= _çìåÇ~êó=ïáíÜ=î~êá~ÄäÉ=ÇÉåëáíó =K=K=K=K=K=K=K=K=K=K=K=K=K= NPT

kçí~íáçå=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= NPU
oÉÑÉêÉåÅÉë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= NPU

UK=^å=ÉÑÑáÅáÉåí=ãÉíÜçÇ=Ñçê=ÅçãéìíáåÖ=ÖêçìåÇï~íÉê=êÉëáÇÉåÅÉ=íáãÉëK=K=K=K=K=K=K=K NPV

UKN= fåíêçÇìÅíáçå=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNPV
UKO= qê~åëéçêí=bèì~íáçå=çÑ=íÜÉ=dêçìåÇï~íÉê=^ÖÉ K=K=K=KNPV
UKP= tçêâáåÖ=píÉéë=áå=cbciltK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNQM

UKQ= aÉãçåëíê~íáîÉ=bñ~ãéäÉ K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= NQN
UKR= `çåÅäìÇáåÖ=oÉã~êâë=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= NQQ

oÉÑÉêÉåÅÉë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= NQT

VK=aáëÅêÉíÉ=ÑÉ~íìêÉ=ãçÇÉäáåÖ=çÑ=ÑäçïI=ã~ëë=~åÇ=ÜÉ~í=íê~åëéçêí=éêçÅÉëëÉë=Äó=ìëáåÖ=
cbcilt K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K NQV

VKN= qÜÉ=aáëÅêÉíÉ=cÉ~íìêÉ=^ééêç~ÅÜ K=K=K=K=K=K=K=K=K=K=K=K=K=KNQV
VKO= qÜÉ=Na=~åÇ=Oa=aáëÅêÉíÉ=cÉ~íìêÉ=bäÉãÉåíë=rëÉÇ =KNQV
VKP= mêÉäáãáå~êáÉë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNQV
VKPKN= cìåÇ~ãÉåí~ä=Ä~ä~åÅÉ=ëí~íÉãÉåí K=K=K=K=K=K=K=K=K=K=K=K=KNQV
VKPKO= cçêãë=çÑ=Ä~ä~åÅÉ=Éèì~íáçåëK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNRN
VKPKP= j~íÜÉã~íáÅ~ä=ÅçåîÉåíáçåë =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNRO
VKPKQ= dê~îáíó=~åÇ=î~êá~ÄäÉëK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNRP
VKPKR= eóÇê~ìäáÅ=ê~Çáìë =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNRQ
VKPKS= cêÉÉ=EéÜêÉ~íáÅF=ëìêÑ~ÅÉ=ÅçåÇáíáçå K=K=K=K=K=K=K=K=K=K=K=K=KNRQ
VKPKT= sáëÅçìë=ëíêÉëëÉë=çå=ëìêÑ~ÅÉë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNRR
VKQ= _~ëáÅ=_~ä~åÅÉ=bèì~íáçåë =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNRS
VKQKN= cäìáÇ=j~ëë=`çåëÉêî~íáçå=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNRS
VKQKO= cäìáÇ=jçãÉåíìã=`çåëÉêî~íáçåK=K=K=K=K=K=K=K=K=K=K=K=K=KNRS
VKQKOKN= a~êÅó=Ñäçï=áå=éçêçìë=ãÉÇá~ =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNRT
VKQKOKO= mä~åÉ=~åÇ=~ñáëóããÉíêáÅ=é~ê~ääÉä=EmçáëÉìáääÉF=Ñäçï KNRU
VKQKOKP= i~ïë=çÑ=ÑäìáÇ=ãçíáçå=Ñçê=çîÉêä~åÇ=~åÇ=ÅÜ~ååÉä=Ñäçï =K

K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNRV
VKQKP= `çåí~ãáå~åí=ã~ëë=ÅçåëÉêî~íáçå K=K=K=K=K=K=K=K=K=K=K=K=KNSN
VKQKQ= båÉêÖó=ÅçåëÉêî~íáçå=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNSO
VKR= dÉåÉê~äáòÉÇ=jçÇÉä=bèì~íáçåë=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNSP
VKRKN= cäçï=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNSP
VKRKO= `çåí~ãáå~åí=ã~ëë =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNSP
VKRKP= eÉ~í=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNSP
VKS= cáåáíÉ=bäÉãÉåí=cçêãìä~íáçåë =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNST

VKSKN= j~ëíÉê=Éèì~íáçåI=ÄçìåÇ~êó=ÅçåÇáíáçåë=~åÇ=ïÉ~â=
ëí~íÉãÉåí =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= NST

VKSKO= pé~íá~ä=ÇáëÅêÉíáò~íáçå =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= NST
VKSKP= qÉãéçê~ä=ÇáëÅêÉíáò~íáçå=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= NSU
VKSKPKN= θJjÉíÜçÇ =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= NSV
VKSKPKO= mêÉÇáÅíçêJÅçêêÉÅíçê=ãÉíÜçÇ K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= NSV
VKSKQ= cáåáíÉJÉäÉãÉåí=Ä~ëáë=çéÉê~íáçåë =K=K=K=K=K=K=K=K=K=K=K=K=K= NTM
VKSKR= ^ëëÉãÄäó=çÑ=íÜÉ=ÇáÑÑÉêÉåí=ÑÉ~íìêÉ=ÉäÉãÉåíë=íç=íÜÉ=ÖäçJ

Ä~ä=ëóëíÉã=ã~íêáñ =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= NTQ
VKSKRKN= kÉÉÇë=Ñçê=ÅççêÇáå~íÉ=íê~åëÑçêã~íáçå K=K=K=K=K=K=K=K=K= NTQ
VKSKRKO= dÉåÉê~äáòÉÇ=ÇáëÅêÉíÉ=ëóëíÉã K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= NTS
VKSKRKP= aÉíÉêãáå~íáçå=çÑ=íÜÉ=ÇáêÉÅíáçå~ä=ÅçëáåÉë==çÑ=ÉäÉãÉåí=É

=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= NTU
VKSKRKQ= aÉãçåëíê~íáîÉ=Éñ~ãéäÉ K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= NUO

oÉÑÉêÉåÅÉë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= NUS
^ééÉåÇáñ=^=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= NUS
kçãÉåÅä~íìêÉ=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= NUS
^ééÉåÇáñ=_=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= NUV
^å~äóíáÅ=Éî~äì~íáçå=çÑ=ã~íêáñ=ÉäÉãÉåíë=EVJUUF=Ñçê=~=Na=
ÅÜ~ååÉä=ÉäÉãÉåí =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= NUV
^ééÉåÇáñ=` K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= NVN
aÉêáî~íáçå=çÑ=íÜÉ=çêíÜçÖçå~ä=ÇáêÉÅíáçå~ä=îÉÅíçêë==Ñçê=~=
Oa=ÛÑä~íÛ=ÉäÉãÉåí=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= NVN
^ééÉåÇáñ=a K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= NVO
cbcilt=ö=î



`çåíÉåíë
fåéìí=çÑ=ÅêçëëJëÉÅíáçå~ä=Ç~í~I=ëí~åÇ~êÇ=áãéäÉãÉåí~J
íáçåë=çÑ=ÜóÇê~ìäáÅ=ê~Çáá=~åÇ=íÜÉáê=êÉä~íáçåë=íç=ÇáÑÑÉêÉåí=

íóéÉë=çÑ=Ñê~ÅíìêÉë=Ñçê=íÜÉ=e~ÖÉåJmçáëÉìáääÉ=~åÇ=íÜÉ=
j~ååáåÖJpíêáÅâäÉê=ÑêáÅíáçå=ä~ïëK=K=K=K=K=K=K=K=K=K=K=K=K=K=NVO

NMK=`ÜÉãáÅ~ä=êÉ~Åíáçåë =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= NVT

NMKN= fåíêçÇìÅíáçå=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNVT
NMKO= dçîÉêåáåÖ=íê~åëéçêí=Éèì~íáçåë=K=K=K=K=K=K=K=K=K=K=K=K=K=KNVT
NMKOKN= _~ä~åÅÉ=ëí~íÉãÉåíë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KNVT
NMKOKO= oÉ~Åíáçå=ê~íÉë=~åÇ=ãìäíáéÜ~ëÉ=~ëéÉÅíë =K=K=K=K=K=K=K=KNVU
NMKP= _~ëáÅ=ÅÜÉãáÅ~ä=âáåÉíáÅë =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOMM
NMKPKN= oÉ~Åíáçå=ëíçáÅÜáçãÉíêó=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOMM
NMKPKO= o~íÉ=ä~ïë=~åÇ=ê~íÉ=Åçåëí~åíë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOMN
NMKPKP= `ÜÉãáÅ~ä=ÉèìáäáÄêáìã=~åÇ=ä~ï=çÑ=ã~ëë=~Åíáçå=Eij^F K

K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOMN
NMKPKQ= qÜÉ=ëíÉ~ÇóJëí~íÉ=~ééêçñáã~íáçå =K=K=K=K=K=K=K=K=K=K=K=K=KOMO

NMKPKR= mêÉJÉèìáäáÄêá~ K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=OMO
NMKQ= pÉäÉÅíÉÇ=êÉ~Åíáçå=éêçÅÉëëÉë=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=OMP
NMKQKN= fçåJÉñÅÜ~åÖÉ=êÉ~Åíáçåë=E~Çëçêéíáçå=áëçíÜÉêãëF =K=OMP
NMKQKO= cáêëíJçêÇÉê=ÇÉÅ~ó=êÉ~Åíáçåë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=OMR
NMKQKP= jáÅÜ~ÉäáëJjÉåíÉå=ãÉÅÜ~åáëã K=K=K=K=K=K=K=K=K=K=K=K=K=K=OMS
NMKQKQ= `çåëÉÅìíáîÉ=êÉ~Åíáçåë =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=OMT
NMKR= pìãã~êáòÉÇ=Éèì~íáçåë=~åÇ=êÉä~íáçåëÜáéë=ìëÉÇ=áå=cbJ

cilt=Ñçê=ãçÇÉäáåÖ=êÉ~ÅíáîÉ=íê~åëéçêí=éêçÅÉëëÉë=OMV
oÉÑÉêÉåÅÉë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=ONO

NNK=oÉã~êâë=çå=Ö~ë=Ñäçï=ãçÇÉäáåÖ=Äó=ìëáåÖ=cbcilt=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= ONP

NNKN= _~ëáÅ=cäçï=bèì~íáçåë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KONP
NNKO= páãéäáÑáÅ~íáçåëK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KONR
NNKP= rëáåÖ=cbcilt=Ñçê=pçäîáåÖ=íÜÉ=kçåäáåÉ~ê=~åÇ=iáåÉ~êJ

áòÉÇ=d~ë=cäçï=bèì~íáçåëK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=ONS
oÉÑÉêÉåÅÉë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=ONT

NOK=píÉ~ÇóJëí~íÉ=äáåÉ~êáòÉÇ=oáÅÜ~êÇë=Éèì~íáçå=Ñçê=Ñ~ëí=ëçäìíáçå=çÑ=ìåë~íìê~íÉÇ=Ñäçï=
ëóëíÉãë=EcrpvF =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= ONV

NOKN= jçíáî~íáçå =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KONV
NOKO= _~ëáÅ=_~ä~åÅÉ=bèì~íáçåëK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KONV
NOKP= bñéçåÉåíá~ä=i~ï=çÑ=oÉä~íáîÉ=eóÇê~ìäáÅ=`çåÇìÅíáîáíóK=K

K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KONV
NOKQ= qê~åëÑçêã~íáçå=çÑ=íÜÉ=píÉ~ÇóJëí~íÉ=oáÅÜ~êÇë=bèì~íáçå

K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOOM

NOKR= _çìåÇ~êó=`çåÇáíáçåë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=OON
NOKRKN= råíê~åëÑçêãÉÇ=ÅçåÇáíáçåë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=OON
NOKRKO= qê~åëÑçêãÉÇ=ÅçåÇáíáçåë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=OOO

oÉÑÉêÉåÅÉë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=OOO
^ééÉåÇáñ=^=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=OOP
kçãÉåÅä~íìêÉ=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=OOP

NPK=qÜÉ=mÉíêçîJd~äÉêâáå=äÉ~ëí=ëèì~êÉ=ãÉíÜçÇ=EmdipF =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= OOR

NPKN= fåíêçÇìÅíáçå=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOOR
NPKO= qÜÉ=mdip=̂ ééêç~ÅÜ=_~ëÉÇ=çå=~=póããÉíêáÅ=píêÉ~ãäáåÉ=

pí~Äáäáò~íáçå=EpPF=îá~=~å=léÉê~íçê=péäáííáåÖ=qÉÅÜåáèìÉ
K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOOS

NPKOKN= léÉê~íçê=ëéäáí =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=OOS
NPKOKO= ^ééêçñáã~íáçå=çÑ=íÜÉ=ÇáÑÑìëáîÉ=é~êí=K=K=K=K=K=K=K=K=K=K=OOU
NPKOKP= ^ééêçñáã~íáçå=çÑ=íÜÉ=~ÇîÉÅíáîÉ=é~êí=K=K=K=K=K=K=K=K=K=OOV
NPKOKQ= ^ëëÉãÄäó=çÑ=íÜÉ=ÇáÑÑìëáîÉ=~åÇ=~ÇîÉÅíáîÉ=é~êíëK=K=K=OPN
îá=ö=tÜáíÉ=m~éÉêë=J=sçäK=f



`çåíÉåíë
NPKOKR= oÉã~êâë=çå=íÜÉ=~ééäáÅ~íáçå=çÑ=çéÉê~íçê=ëéäáí=íç=íÜÉ=ÇáJ
îÉêÖÉåÅÉ=Ñçêã=çÑ=íÜÉ=íê~åëéçêí=Éèì~íáçåK=K=K=K=K=K=KOPO

NPKP= fåíÉÖê~íáçå=çÑ=mdip=áåíç=íÜÉ=cbcilt=páãìä~íáçå=
m~Åâ~ÖÉ =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOPP

NPKPKN= dÉåÉê~ä K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOPP
NPKPKO= oÉëìã¨=çÑ=Ä~ëáÅ=Éèì~íáçåë =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOPQ
NPKQ= _ÉåÅÜã~êâë =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOPT
NPKQKN= qïçJÇáãÉåëáçå~ä=~ÇîÉÅíáîÉJÇçãáå~åí=íê~åëéçêí=~í=~=

ÖêáÇJé~ê~ääÉä=ÑäçïK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOPT
NPKQKO= qïçJÇáãÉåëáçå~ä=~ÇîÉÅíáîÉJÇçãáå~åí=íê~åëéçêí=~í=~å=

çÄäáèìÉ=Ñäçï=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOQP

NPKQKP= qÜêÉÉJ~åÇ=íïçJÇáãÉåëáçå~ä=íê~åëéçêí=ãçÇÉäáåÖ=çÑ=
íÜÉ=é~íÅÜ=ëçìêÅÉ=éêçÄäÉã=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= OQT

NPKQKQ= eççéÉë=~åÇ=e~êäÉã~ååÛë=íïçJïÉää=éêçÄäÉãK=K=K=K= ORO
NPKQKR= eáÖÜäó=~ÇîÉÅíáîÉ=ëçäìíÉ=íê~åëéçêí=áå=~=ëíÉ~ÇóJëí~íÉ K=K=

=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= ORS
NPKQKS= qïçJÇáãÉåëáçå~ä=ìåë~íìê~íÉÇ=Ñäçï=~åÇ=íê~åëéçêíORV
NPKR= `çåÅäìëáçåë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= OSR

oÉÑÉêÉåÅÉë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= OSR
^ééÉåÇáñ=^=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= OSS
kçãÉåÅä~íìêÉ=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= OSS

NQK=bñíÉåÇÉÇ=Ñçêãìä~íáçåë=çÑ=Åçåëíê~áåíë=Ñçê=`~ìÅÜóJíóéÉ=EPêÇ=âáåÇF=ÄçìåÇ~êó=
ÅçåÇáíáçåë=áå=cbciltK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K OSV

NQKN= _~ëáÅ=cçêãìä~íáçå=çÑ=PêÇ=háåÇ=_çìåÇ~êó=`çåÇáíáçåë=K
K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOSV

NQKO= léíáçå~ä=`çåëíê~áåíë=Ñçê=PêÇ=háåÇ=_çìåÇ~êó=`çåÇáJ
íáçåë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOTM

NQKOKN= qÜÉ=ëí~åÇ~êÇ=Ñçêã K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= OTM
NQKOKO= qÜÉ=åÉï=Ñçêã=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= OTN

oÉÑÉêÉåÅÉë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= OTP

NRK=kçåäáåÉ~ê=ÇáëéÉêëáçå=áå=ÇÉåëáíóJÇÉéÉåÇÉåí=ã~ëë=íê~åëéçêí K=K=K=K=K=K=K=K=K=K=K=K OTR

NRKN= fåíêçÇìÅíáçå=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOTR
NRKO= _~ëáÅ=bèì~íáçåë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOTS
NRKP= fãéäÉãÉåí~íáçå=áå=cbciltK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOTS
NRKPKN= pÉäÉÅíáçå=çÑ=ÇáëéÉêëáçå=ä~ïëK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOTS

NRKPKO= kìãÉêáÅ~ä=ëçäìíáçå=Ñçê=åçåäáåÉ~ê=ÇáëéÉêëáçå K=K=K=K= OTT
NRKQ= bñ~ãéäÉ =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= OTT

kçí~íáçå=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= OTV
oÉÑÉêÉåÅÉë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= OUM

NSK=`çåëáëíÉåí=îÉäçÅáíó=~ééêçñáã~íáçå=áå=íÜÉ=ÑáåáíÉJÉäÉãÉåí=ëáãìä~íáçå=çÑ=ÇÉåëáíóJ
ÇÉéÉåÇÉåí=ã~ëë=~åÇ=ÜÉ~í=íê~åëéçêí=éêçÅÉëëÉë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K OUN

NSKN= fåíêçÇìÅíáçå=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOUN
NSKO= _~ëáÅ=bèì~íáçåë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOUP
NSKP= qÜÉ=eóÇêçëí~íáÅ=`çåÇáíáçå =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOUQ
NSKPKN= bèìáäáÄêáìã=êÉèìáêÉãÉåíW=qÜÉ=êÉèìáêÉãÉåí=çÑ=ÅçåëáëJ

íÉåÅó =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOUQ
NSKPKO= qÜÉ=~êíáÑ~ÅíW=péìêáçìë=åçåÅçåëáëíÉåí=îÉäçÅáíáÉë=~åÇ=

Åçããçå=ï~óë=íç=çîÉêÅçãÉ=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KOUR
NSKQ= kÉï=cçêãìä~íáçå=çÑ=`çåëáëíÉåí=sÉäçÅáíó=K=K=K=K=K=K=KOUT
NSKQKN= qÜÉ=áãéêçîÉÇ=cêçäâçîáÅ=~åÇ=hå~ÄåÉê=~äÖçêáíÜã=KOUT

NSKQKNKN= qê~åëÑçêã~íáçåë=áå=äçÅ~ä=ÅççêÇáå~íÉë =K=K=K=K=K=K=K=K=K= OUT
NSKQKNKO==qÜÉ=åÉï=Ñçêãìä~íáçå K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= OUU
NSKQKNKP==qÜÉ=åçÇ~ä=èì~åíáíáÉë==çÑ=íÜÉ=áåíÉÖê~ä=ÑìåÅíáçåë K=K= OVM
NSKQKO= `çåíáåìçìë=ÅçåëáëíÉåí=îÉäçÅáíáÉë =K=K=K=K=K=K=K=K=K=K=K=K= OVR
NSKR= bñ~ãéäÉë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= OVS
NSKRKN= eóÇêçëí~íáÅ=ÅçåÇáíáçå=áå=~=ÅäçëÉÇ=éçêçìë=ÄçñK=K=K= OVS
NSKRKO= qÜÉ=bäÇÉê=éêçÄäÉã=êÉîáëáíÉÇ K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= OVV
NSKRKP= qÜÉ=ë~äíéççä=éêçÄäÉãK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= PMN
NSKS= `äçëìêÉ =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= PMU
cbcilt=ö=îáá



`çåíÉåíë
oÉÑÉêÉåÅÉëK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KPMU
^ééÉåÇáñ=^ K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KPMV
kçãÉåÅä~íìêÉK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KPMV
^ééÉåÇáñ=_ K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KPNN

däçÄ~ä=ëãççíÜáåÖ=EéêçàÉÅíáçåF=çÑ=ÇáëÅçåíáåìçìë=îÉJ
äçÅáíáÉë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=PNN
içÅ~ä=ëãççíÜáåÖ=EéêçàÉÅíáçåF=çÑ=ÇáëÅçåíáåìçìë=îÉäçÅJ
áíáÉë=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=PNO

NTK=`çìéäÉÇ=ÖêçìåÇï~íÉê=Ñäçï=~åÇ=íê~åëéçêíW=qÜÉêãçÜ~äáåÉ=~åÇ=Pa=ÅçåîÉÅíáçå=
ëóëíÉãëK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= PNP

kçãÉåÅä~íìêÉK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KPNP
NTKN= fåíêçÇìÅíáçå=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KPNR
NTKO= _~ëáÅ=bèì~íáçåë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KPNU
NTKP= pé~íá~ä=aáëÅêÉíáò~íáçåK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KPOM
NTKQ= `çåíáåìçìë=^ééêçñáã~íáçå=çÑ=sÉäçÅáíó=cáÉäÇë =K=K=KPOM
NTKR= `çåëíê~áåíë=~åÇ=oÉä~íÉÇ=_ìÇÖÉí=^å~äóëáë K=K=K=K=K=K=KPOO
NTKS= qÉãéçê~ä=aáëÅêÉíáò~íáçå=~åÇ=fíÉê~íáîÉ=pçäìíáçå=mêçÅÉëë

K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KPOQ
NTKT= bñ~ãéäÉë=çÑ=Oa=qÜÉêãçÜ~äáåÉ=póëíÉãë K=K=K=K=K=K=K=KPOU
NTKTKN= aáãÉåëáçåäÉëë=é~ê~ãÉíÉêë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KPOU
NTKTKO= qÜÉ=Oa=íÜÉêãçÜ~äáåÉ=bäÇÉê=éêçÄäÉã K=K=K=K=K=K=K=K=K=KPOV
NTKTKOKN= aÉÑáåáíáçå=çÑ=íÜÉ=éêçÄäÉã=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KPOV
NTKTKOKO= oÉëìäíë=~åÇ=ÇáëÅìëëáçå K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KPPN
NTKTKP= qÜÉ=Oa=íÜÉêãçÜ~äáåÉ=ë~äí=ÇçãÉ=éêçÄäÉã=K=K=K=K=K=KPPQ
NTKTKPKN= aÉÑáåáíáçå=çÑ=íÜÉ=éêçÄäÉã=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KPPQ
NTKTKPKO= oÉëìäíë=~åÇ=ÇáëÅìëëáçå K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KPPS
NTKU= bñ~ãéäÉë=çÑ=Pa=`Éääìä~ê=`çåîÉÅíáçå=K=K=K=K=K=K=K=K=K=KPPU
NTKUKN= qÜÉ=Pa=bäÇÉê=éêçÄäÉã=Ñçê=ëáåÖäÉJÇáÑÑìëáîÉ=Eëçäìí~äF=~åÇ=

ÇçìÄäÉJÇáÑÑìëáîÉ=EíÜÉêãçÜ~äáåÉF=ÅçåîÉÅíáçå =K=K=K=KPPU
NTKUKNKN= aÉÑáåáíáçå=çÑ=íÜÉ=éêçÄäÉã=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=KPPU

NTKUKNKO= oÉëìäíë=~åÇ=ÇáëÅìëëáçå=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=PPU
NTKUKO= qÜÉ=Pa=_¨å~êÇ=ÅçåîÉÅíáçåK=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=PQQ
NTKUKOKN= aÉÑáåáíáçå=çÑ=íÜÉ=éêçÄäÉã =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=PQQ
NTKUKOKO= oÉëìäíë=~åÇ=ÇáëÅìëëáçå=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=PQR
NTKV= `äçëìêÉ =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=PQR

oÉÑÉêÉåÅÉë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=PQT
^ééÉåÇáñ=^=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=PRM
tÉ~â=Ñçêã=çÑ=íÜÉ=Åçåíáåìáíó=Éèì~íáçå=ENTJNF K=K=K=PRM
tÉ~â=Ñçêã=çÑ=íÜÉ=a~êÅó=Éèì~íáçå=ENTJOF=K=K=K=K=K=K=PRN
tÉ~â=Ñçêã=çÑ=íÜÉ=ã~ëë=íê~åëéçêí=Éèì~íáçåë=ENTJPFK=K=
=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=PRN
tÉ~â=Ñçêã=çÑ=íÜÉ=ÜÉ~í=íê~åëéçêí=Éèì~íáçå=ENTJQF PRO
cáåáíÉ=ÉäÉãÉåí=Ñçêãìä~íáçåë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=PRO
^ééÉåÇáñ=_=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=PRP
däçÄ~ä=ëãççíÜáåÖ=çÑ=ÇáëÅçåíáåìçìë=îÉäçÅáíó=ÑáÉäÇë =K=K=
=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=PRP
içÅ~ä=ëãççíÜáåÖ=çÑ=ÇáëÅçåíáåìçìë=îÉäçÅáíó=ÑáÉäÇë =PRQ
^mmbkafu=` =K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=PRR
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ABSTRACT
Primary variable switching appears as a promising numeri-
cal technique for variably saturated flows. While the stan-
dard pressure-based form of the Richards equation can
suffer from poor mass balance accuracy, the mixed form
with its improved conservative properties can possess con-
vergence difficulties for dry initial conditions. On the other
hand, variable switching can overcome most of the stated
numerical problems. The paper deals with variable switch-
ing for finite elements in two and three dimensions. The
technique is incorporated in both an adaptive error-con-
trolled predictor-corrector one-step Newton (PCOSN) itera-
tion strategy and a target-based full Newton (TBFN)
iteration scheme. Both schemes provide different behaviors
with respect to accuracy and solution effort. Additionally, a
simplified upstream weighting technique is used. Compared
with conventional approaches the primary variable switch-
ing technique represents a fast and robust strategy for unsat-
urated problems with dry initial conditions. The impact of
the primary variable switching technique is studied over a
wide range of mostly 2D and partly difficult-to-solve prob-
lems (infiltration, drainage, perched water table, capillary
barrier), where comparable results are available. It is shown
that the TBFN iteration is an effective but error-prone proce-
dure. TBFN sacrifices temporal accuracy in favor of accel-
erated convergence if aggressive time step sizes are chosen.

Key words: unsaturated-saturated flow, primary variable
switching, Newton technique, finite elements, time stepping
control, benchmarking, capillary barrier

NKN fåíêçÇìÅíáçå

In the modeling of unsaturated-saturated flow pro-
cesses several alternatives exist for numerically solving
the governing balance equations with their nonlinear
constitutive relationships. The Darcy equation of fluid
motion and the fluid mass conservation equation form
the physical basis2. In the context of unsaturated flow
the basic formulation involves both the fluid pressure
head  and the saturation  as unknown variables. For
these two unknowns only one balance equation, the
basic Richards equation19, is available. To close the
mathematical model one constitutive relationship in
form of the capillary pressure head-saturation function
is additionally needed to convert one variable to the
other (and vice versa). Consequently, the modeler has
to decide between primary and secondary variables.
Depending on such a choice, different modeling
approaches result which are mathematically equivalent
in the continuous formulation, but their discrete ana-
logs are different.

As a result, three forms of the unsaturated flow
equation can be derived: (1) the pressure-based ( -)
form, where the primary variable is the pressure head

ψ s

ψ

N
lå=íÜÉ=éêáã~êó=î~êá~ÄäÉ=ëïáíÅÜáåÖ=íÉÅÜåáèìÉ=Ñçê
ëáãìä~íáåÖ=ìåë~íìê~íÉÇJë~íìê~íÉÇ=Ñäçïë
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(or the hydraulic head), (2) the saturation-based ( -)
form, where the saturation (or the moisture content )
is chosen as the primary variable, and (3) the mixed
( -)form, where both variables are employed and,
in solving the discrete equation system, the pressure
head is actually used as the primary variable.

Each of the three different forms has its own advan-
tages and drawbacks. The -based form can be used
for both saturated and unsaturated soils. The pressure
head variable is unique and continuous. Models of this
type have been extensively used in various
applications15,18,22,23,30,32,33,36,37,39,43,44. But, it has been
shown1,4,31,45 that the -based form can produce signif-
icant global mass balance errors unless very small time
steps are used. The -based approach can be improved
if the derivation of the moisture capacity term is per-
formed by suited chord slope approximations in replac-
ing analytical derivatives as proposed by Rathfelder
and Abriola38. However, the numerical differentiation
must be prevented if the pressure head difference falls
below a specific range and a proper treatment of the
derivative term is then required (for instance, resorting
to an analytical evaluation). Accordingly, chord slope
approximation does not appear as a general and suffi-
ciently robust technique. It shall fail under drastic
parameters and initial conditions. Difficulties of this
kind were reported by Paniconi and Putti37.

Some of these difficulties are avoided when using
the mixed-form schemes which possess much better
properties with respect to accurate mass conservative
solutions. Celia et al.4 solve the mixed form by a modi-
fied Picard iteration scheme. Within the iterative proce-
dure the pressure head is used as the primary variable
for the solution at a new iteration step. This mixed

Picard technique was successfully applied by Simunek
et al.42, Vogel et al.47 and Ju and Kung25 for different
situations. Fuhrmann16 and Lehmann and Ackerer28

enhanced the mixed form by using a Newton iterative
scheme instead of the Picard iteration. Lehmann and
Ackerer28 obtained their best results for one-dimen-
sional problems with the mixed form combined with
both the modified Picard and the Newton method.
Again, the pressure head was chosen as the primary
variable.

Numerical schemes based on the -form of the
Richards equation are restricted to unsaturated flow
conditions because the saturation variable is not unique
for saturated regions, where the soil-water diffusivity
goes to infinity and a pressure-saturation relationship
no longer exists. Additionally, the common transforma-
tion into the -form (and the equivalent water-content-
based form) of the Richards equation is restricted to
homogeneous soils as thoroughly discussed by LaBolle
and Clausnitzer27. Note further that the saturation is
basically a discontinuous variable. On the other hand,
Hills et al.20 have shown that such a saturation-based
algorithm can result in significantly improved perfor-
mances compared to pressure-based methods, espe-
cially when applied to very dry soils. To benefit from
the good convergence properties of the -form for both
saturated and unsaturated conditions Kirkland et al.26

suggest to use the saturation in the unsaturated zone
and the pressure head in the saturated zone. Unfortu-
nately, their approach is not sufficiently general. As
noted by Forsyth et al.13 the scheme introduces compli-
cations for heterogeneous systems, is partially explicit
in time, and suffers from balance errors at the transition
between the saturated and unsaturated zones.
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Recently, Forsyth et al.13 introduced a powerful new
idea in the context of saturated-unsaturated flow simu-
lations. It is termed as the primary variable substitu-
tion, or primary variable switching technique, and
originates from multiphase flow modeling. It effec-
tively handles the appearance and disappearance of
phases35. In this approach, a full Newton method is
used where the different primary variables, namely sat-
uration and pressure, are switched in different regions
depending on the prevailing saturation conditions at
each node of a mesh. This technique was found to yield
rapid convergence in both the unsaturated and saturated
zones compared to pressure-based formulations.

In the light of Forsyth et al.’s work13, primary vari-
able switching appears as a promising technique to
speed up the overall solution process and to tackle dif-
ficult-to-solve unsaturated-saturated flow problems for
heterogeneous porous media. The present study fol-
lows these ideas. Modifications and improvements of
Forsyth et al.’s scheme consist of (1) a powerful pre-
dictor-corrector approach with first and second order
accuracy, (2) a one-step full Newton approach with
only one control parameter to manage the entire solu-
tion process in an adaptive time marching scheme, and
(3) a rigorous analytical derivation of the Jacobian of
the Newton method. In contrast to the predictor-correc-
tor solution control an aggressive target-based time
marching scheme, providing an effective but error-
prone strategy, is analyzed.

It will be shown that the primary variable switching
technique is the most general approach in which mixed
forms using either Picard or Newton techniques appear
as special cases. The primary variable switching tech-
nique is employed for standard 2D and 3D finite ele-

ments. However, the matrix assembly procedure is
altered for finite elements depending on the occurrence
of primary variables. An upstream weighting scheme is
introduced for both structured and unstructured meshes
of 2D and 3D finite elements. The paper benchmarks
these various schemes by means of selected applica-
tions to verify the promised efficiency of primary vari-
able switching. Moisture dynamics in homogeneous
and layered soils with dry initial conditions, deemed
’tough’ infiltration and drainage problems, and capil-
lary barrier simulations under extreme parameter con-
trasts and very dry initial conditions are studied. Both
agreements and discrepancies are found with previous
results presented by Celia et al.4, van Genuchten44,
Kirkland et al.26, Forsyth et al.13, Webb48, and Forsyth
and Kropinski14. Further comparative studies for find-
ing the ’best’ solution strategy in practical modeling of
unsaturated-saturated flows are required. 

NKO _~ëáÅ=bèì~íáçåë

The mass conservation equation of a fluid in a vari-
ably saturated media2 is given by

 (1-1)

The fluid motion is described by the Darcy equation
written in the form

(1-2)

In eqns (1-1) and (1-2),

= , hydraulic (piezometric) head;

So s ψ( )∂ψ
∂t
------- ε∂s ψ( )

∂t
-------------- ∇ q⋅+ +⋅ Q=

q Kr s( )K ∇h χe+( )– Kr s( )K ∇ψ 1 χ+( )e+[ ]–= =

h ψ z+
cbcilt=ö=NN
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pressure head, (  saturated medium, 
unsaturated medium);
saturation, ( ,  if medium is satu-
rated);
Darcy flux vector;
elevation above a reference datum;
time;

= , specific storage due to fluid and
medium compressibility;
porosity;
fluid compressibility;
coefficient of skeleton compressibility;
relative hydraulic conductivity ( ,

 if saturated at );
tensor of hydraulic conductivity for the saturated
medium (anisotropy);
buoyancy coefficient including fluid density
effects;
gravitational unit vector;
specific mass supply;

Constitutive relationships are additionally required (1)
for the saturation  as a function of the pressure (capil-
lary) head , as well as its inverse, the pressure head

 as a function of the saturation , and (2) for the rela-
tive hydraulic conductivity  as a function of either
the pressure head  or the saturation . The following
empirical relationships are used for the present
study2,47:

van Genuchten-Mualem parametric model:

(1-3)

(1-4)

Brooks-Corey parametric model:

(1-5)

(1-6)

with the effective saturation

(1-7)

in which

effective saturation;
residual saturation;
maximum saturation;
air-entry pressure head, ;
curve-fitting parameter;
pore size distribution index, ;

= , curve fitting parameter (Mualem
assumption);

= , curve-fitting parameter;
pore-connectivity parameter;

In combining eqns (1-1) and (1-2) a general mixed
form of the Richards equation naturally results, viz.,

(1-8)
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which has to be solved either for  (and ) or . The
retention curves (1-3) or (1-5) can be used to convert
one variable to the other (and vice versa), viz.,

(1-9)

NKP cáåáíÉ= bäÉãÉåí= cçêãìä~J
íáçå

Let  and (0, ) be the spatial and temporal
domain, respectively, where  is the number of space
dimension (2 or 3) and  is the final simulation time,
and let  denote the boundary of , the weak form of
the mass balance equation (1-1) can be written as

(1-10)

and with eqn (1-2) as

(1-11)

where  is a test function and  corresponds to the
normal fluid flux directed positive outward on .

In the finite element context a spatial semi-discreti-
zation  of the continuum domain  is achieved by
the union of a set of nonoverlapping subdomains ,

the finite elements, as

(1-12)

On any finite-element domain , the unknown vari-
ables and dependent coefficients are replaced by a con-
tinuous approximation that assumes the separability of
space and time, thus

(1-13)

and, respectively,

(1-14)

where  represents coordinate indices,
 designates nodal indices, M is the total

number of nodes,  is the nodal basis function, called
the trial space, and  are the Cartesian spatial coordi-
nates. Note that the summation convention is used for
repeated indices. In our study the basis functions 
are based on  (continuous) piece-wise polynomials
that are piecewise-continuously differentiable and
square integrable (but whose second and higher deriva-
tives need not to exist).

Using the Galerkin-based finite element method
where the test function  becomes identical to the trial
space , eqn (1-11) leads to the following global
matrix system of M equations

(1-15)
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with its components written in indicial notation

(1-16a)

(1-16b)

(1-16c)

(1-16d)

where the subscripts  denote nodal
indices,  are spatial indices of the Carte-
sian coordinates, and  is the Kronecker operator.
The superposed dot means differentiation with respect
to time . Nonlinearities are shown in parentheses.
Note that all matrices connected with time derivatives
are lumped. This is virtually mandatory for unsaturated
problems to ensure smooth and non-oscillatory
solutions4,25. The system of equations (1-15) is highly
nonlinear due to the functional dependence of the con-
stitutive relationships (1-3)-(1-6) for the saturation and
the relative conductivity.

The discretized form (1-15) of the Richards equa-
tion is based on the mixed formulation (1-8), where the
fluid and medium compressibility  relates to the
pressure head . For unsaturated conditions the com-
pressibility effects are usually neglected. However, we

should mention that the explicit introduction of the -
term leads to a non-conservative form with respect to
the fluid and medium compressibility. For unsaturated
conditions (at an arbitrary negative pressure) the dis-
cretization (1-15) is unconditionally mass-conservative
for a vanishing -term only.

NKQ qÉãéçê~ä=aáëÅêÉíáò~íáçå

For stability reasons only implicit (A-stable) time
discretizations are appropriate for the present class of
problems. Otherwise, two-step techniques have to be
preferred for multidimensional problems. For the
present analysis the fully implicit backward Euler (BE)
scheme with a first-order accuracy and the semi-
implicit nondissipative trapezoid rule (TR) with a sec-
ond-order accuracy are enforced. 

Denoting the time plane by the superscript , the
implicit form of eqn (1-15) reads

(1-17)

where the time derivatives are approximated, for the
BE scheme, by

(1-18)

and for the TR scheme, by
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(1-19)

Inserting eqns (1-18) and (1-19) into eqn (1-17) results
in

(1-20)

where the weighting factor  is unity for the
BE scheme and 2 for the TR scheme. It represents a
variety of unsaturated flow models, including the vari-
able switching technique, in the most general discrete
form. As seen in eqn (1-20) the second-order TR
scheme is readily available with little extra work. It
only differs from the first-order BE scheme by the
acceleration terms  and  at the previous time
plane, and by the factor  instead of .

NKR mêáã~êó= s~êá~ÄäÉ= pïáíÅÜJ
áåÖ=jÉíÜçÇçäçÖó

To solve the basic matrix system (1-20) one has to
decide which variable of  or  should be primary.

Commonly, the selection of the primary variable is
done in a static manner and results in a ’fixed’ -, -
or -modeling strategy, including the limitations
and drawbacks discussed above. In contrast, primary
variable switching is done dynamically depending on
the current flow characteristics.

Let  be the primary variable associated with node
.  can be either  or . Accordingly, we can con-

sider  as a vector containing the different primary
variables in the solution space  as

(1-21)

Hence, the matrix system (1-20) can be written in the
form

(1-22)

and solved for  ( ).

The solution of the nonlinear equations (1-22), i.e., the
vector of primary variables , is performed by the
Newton method, viz.,

(1-23a)

with the increment

(1-23b)

and the Jacobian  expressed in indicial notation as
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(1-23c)

where  denotes the iteration number.
 

The primary variable at any node  is switched for
every Newton iteration  by using the following
method13:

IF ( ) THEN

Use  as primary variable at node  and solve
the Newton statement (1-23a) as

(1-24)

ELSE IF ( ) THEN

Use  as primary variable at node  and solve
the Newton statement (1-23a) as

(1-25)

ELSE

Do not change primary variable for the node  and
solve eqn (1-24) or eqn (1-25) according to the hitherto
selected primary variable (  or ).

ENDIF

The Newton approach requires continuous derivatives
of the Jacobians  and  with respect to the pressure
head  and the saturation , respectively. In the
present finite element method the variables  and 

are approximated in a continuous manner according to
(1-13) if occurring as primary variables and the Jacobi-
ans are thus derivable. On the other hand, variable
smoothing is necessary if one determines secondary
variables from primary variables using the retention
curves (1-3) or (1-5) under heterogeneous conditions.
To do so, element material quantities have to be aver-
aged at nodal patches. In the context of the finite ele-
ment method, the arithmetic mean appears as a natural
smoothing technique and will be preferred here. Such a
smoothing technique is analogous to that of deriving
continuous Darcy fluxes in heterogeneous porous
media as described in Diersch and Kolditz10.

The switching tolerances  and  have to be
appropriately chosen. The following requirements are
necessary

(1-26)

The Jacobians  can be computed either numerically
or analytically. The analytical method is more
efficient28 and will be preferred in the present study.
While a perturbation scheme such as the one used by
Forsyth et al.13 requires a pass of 2M evaluations, ana-
lytical derivatives require only a pass of M evaluations.
The elements of the corresponding Jacobians

 of eqn (1-24) and  of
eqn (1-25) are summarized in the Appendices A and B,
respectively. Otherwise, the residual  at the
iterate  and node  is independent of the actually used
primary variables  and is computed according to eqn
(1-20) in the following way
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(1-27)

It has to be noticed here that the variable switching
is generally nodewise. This carries consequences in the
finite element assembly technique used to construct the
Jacobian . Traditionally, the assembling process is
performed by

(1-28)

in an elementwise fashion where the nodal contribu-
tions are added in the global matrix. This can no longer
be done if the primary variables appear in a mixed
manner in a mesh. If the primary variables are not of
the same kind at a current stage, the following node-
wise assembly is required

(1-29)

where the contributions from an adjacent element patch
 to a node  are added in the global matrix.

The primary variable switching technique can be
considered as a most general formulation in which pre-

vious solution strategies are encompassed as special
cases. Taking the pressure head  as primary variable,
omitting for simplicity the compressibility term 
and considering only the fully implicit BE scheme, we
obtain from eqns (1-24) and (A1)

(1-30)

which is the Newton scheme of the mixed -form
of the Richards equation16,28. Furthermore, the modi-
fied Picard scheme for the mixed -form of the
Richards equation4 can be deduced from eqn (1-30) by
dropping the partial Jacobians of the 2nd and 4th term
of the left-hand side of eqn (1-30), yielding

(1-31)

with the moisture capacity (A7)
. Finally, the common -based

form is easily obtained from eqn (1-31) if the saturation
terms of the right-hand side are expressed by their
derivatives with respect to the pressure head:

(1-32)
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While the Newton scheme applied to the primary
variable switching technique in eqns (1-24) and (1-25)
and to the mixed form (1-30) is quadratically conver-
gent, the Picard-type solutions (1-31) and (1-32) pro-
vide only a linearly convergent accuracy. One notes
here that the matrix systems of the Newton method (1-
24), (1-25) and (1-30) are always unsymmetric, while
the Picard schemes in eqns (1-31) and (1-32) preserve
symmetry of the resulting matrix systems.

The derivation of the family of unsaturated flow
models presented here clearly differs from the Newton
approach put forward by Paniconi et al.36, Paniconi and
Putti37 and Miller et al.30 who started from a -based
approach in a formal mathematical manner. As a result,
the second order derivatives of the saturation relation-
ship arising in the computation of the Jacobian appear
somewhat questionable from a physical point of view.

NKS pçäìíáçå=`çåíêçä

NKSKN ^Ç~éíáîÉ= éêÉÇáÅíçêJÅçêêÉÅíçê
çåÉJëíÉé= kÉïíçå= Em`lpkF= íáãÉ
ã~êÅÜáåÖ=ëÅÜÉãÉ

Generally, the control of the solution of the resulting
highly nonlinear matrix systems (1-24) and (1-25) is a
tricky matter. Both the choice of the time step size 
and the iteration control of the Newton scheme signifi-
cantly influence the success and the efficiency of the
simulation. Given that the overall solution process
should be performed with a minimum of user-specified
control parameters, a fully automatic and adaptive time
selection strategy is useful for the present class of prob-

lems. In this work a predictor-corrector time integrator
is used which was originally introduced by Gresho et
al.17, subsequently improved by Bixler3, and success-
fully employed for various buoyant groundwater flow
problems5,10. It monitors the solution process via a
local time truncation error estimation in which the time
step size is cheaply and automatically varied in accor-
dance with temporal accuracy requirements. It has been
proven to be a cost-effective and robust procedure in
that the time step size is increased whenever possible
and decreased only if necessary.

In the primary variable switching strategy the New-
ton method plays a central role. The control of the iter-
ation process with a variable time step size can be
combined in the following unified procedure. It is well-
known that the Newton scheme converges (with a qua-
dratic convergence rate) if (and only if) a good initial
guess of the solution is available. In transient situations
this is feasible with a proper adaptation of the time step
size to the evolving flow characteristics. At a given
time stage, a good initial guess of the solution can
always be obtained provided the time step is suffi-
ciently small. Now, it can be argued17 that the required
degree of convergence has to be satisfied in just one
full Newton iteration per time step. To do so, the time
discretization error  can also be used as the Newton
convergence criterion for the iterate . This is called
the one-step Newton method where  can be seen as an
overall error parameter aiming at keeping the time dis-
cretization error small.

For the primary variable switching technique the
proposed PCOSN time marching scheme consists of
the following main working steps:

ψ

∆tn

δ
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δ
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STEP 0: Initialization
Compute the initial acceleration vectors  and 
from eqn (1-17) as

(1-33)

and with

(1-34)

where  is the initial moisture capacity vector accord-
ing to eqn (A7),  and  are the initial distributions
of the pressure head  and the saturation , respec-
tively. Furthermore, we choose an initial time step size

.

STEP 1: Predictor solutions
Explicit schemes of first and second order accuracy in
time provide appropriate predictor solutions for the pri-
mary variable  (either  or ) at the new
time plane . We use either the first-order accurate
forward Euler (FE) scheme

(1-35)

or the second-order accurate Adams-Bashforth (AB)
scheme

(1-36)

Note here that, since  is required, the AB formula
cannot be applied before the second step ( ). The

prediction has to be started with the FE procedure,
where  is available from eqns (1-33) and (1-34). The
subscript  indicates the predictor values at the new
time plane . In the one-step Newton procedure
(i.e., ) the resulting nonlinear matrix equations
(1-24) and (1-25) are linearized by using the corre-
sponding predictors. Accordingly, the Newton iterates
are taken as

(1-37)

STEP 2: Corrector solutions
Depending on the primary variable switching criteria
stated above the following matrix systems (1-24), (1-
25) arise

(1-38)

to solve the pressure head  or

(1-39)

to solve the saturation , where the (predicted)
residual  in eqns (1-38) and (1-39) is also evalu-
ated by using the predictor solutions  and 
applied to the -terms in eqn (1-27). Note that the pre-
dictor of the FE (1-35) is used for the BE ( ) and
that the predictor of the AB (1-36) is used for the TR
( ) in eqns (1-38) and (1-39). Accordingly, the
predictor-corrector solutions will be called FE/BE and
AB/TR scheme, respectively.
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STEP 3: Updated accelerations
In preparing the data for the next time step the new
acceleration vectors  are computed for the FE

(1-40)

by using the BE (1-18) and for the AB

(1-41)

by modifying the TR (1-19) according to Bixler3.

STEP 4: Error estimation
The local truncation error of the approximate equations
depends on the predicted  and corrected 
solutions. For the FE/BE and the AB/TR the error esti-
mation yields17

(1-42a)

with

(1-42b)

Appropriate error norms are applied for the vector

. Commonly, the weighted RMS  error norm

 (1-43)

and the maximum  error norm

(1-44)

are chosen, where  is the maximum value of the
current primary variable detected at the time plane

, and used to normalize the solution vector.

STEP 5: Tactic of time stepping
The new provisional time step size can be computed by
means of the error estimates (1-42a), (1-43), (1-44), the
current time step size , and a user-specified error
tolerance  as17

(1-45)

The following criteria are used to monitor the progress
of the solution:
1. If

(1-46a)
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the current solution  is accurate within the error
bound defined by  and the increase of the time step is
always accepted.

2. If

(1-46b)

where  is typically 0.85, the solution  is
accepted but the time step size is not changed, i.e.,

.

3. If

(1-46c)

the solution  cannot be accepted within the
required error tolerance  and has to be rejected. The
proposed new time step size (1-45) is reduced accord-
ing to5

(1-46d)

and the solution is repeated for the time plane 
with .

It is important to note that the error tolerance  is the
only user-specified parameter to control the entire solu-
tion process. The starting-up phase is still influenced
by the initial time step  which should be kept small.
In practice two further constraints for the time step size
have shown to be useful. Firstly, the time step should
not exceed a maximum measure, i.e., . Sec-

ondly, the rate for changing the time step size
 has also to be limited, i.e., 

(say 2 or 3). This can help prevent inefficient oscilla-
tions in time step size prediction.

The one-step Newton method embedded in the pre-
dictor-corrector schemes (FE/BE or AB/TR) requires
the construction and solution of just one linear(ized)
system per time step. The unsymmetric linear systems
(1-38) or (1-39) are solved via a BiCGSTAB iterative
solver46 preconditioned by an incomplete Crout decom-
position scheme. The preconditioning process automat-
ically provides a suited scaling of the final matrix
system. Otherwise, taking the predictor solutions (1-
35) or (1-36) the derivative terms (A7) and (B7),
namely the moisture capacity and inverse moisture
capacity terms, respectively, are easily computed by
chord slope approximations as summarized in Appen-
dix C. 

It should be emphasized that the proposed PCOSN
technique controls the overall temporal discretization
error via the tolerance . At the same time,  is
enforced as a convergence limit for the Newton
method. This error-controlled solution strategy is very
different from the target-based time step selection tech-
nique which is discussed next.

NKSKO q~êÖÉíJÄ~ëÉÇ= Ñìää= kÉïíçå
Eq_ckF=íáãÉ=ëíÉééáåÖ=ëÅÜÉãÉ

Such type of solution strategy is often used in mul-
tiphase flow simulation12,24. Applying this technique to
unsaturated flow problems Forsyth et al.13 reported a
significant increase in performance compared to com-
mon (Picard iteration) solution strategies (e.g., up to 10
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times faster). In that work the only criterion is the New-
ton convergence for a possibly large time step size. The
step size is determined from a desired change in the
variable per time step given by user-specified targets.
The target change parameters are often chosen very
large to get aggressive time step sizes. The procedure is
carried out in the following steps:

STEP 1: Perform Newton iteration
With a given time step size  at time plane  (at ini-
tial time we start with a sufficiently small ) we
solve for the new Newton iteration  either

(1-47)

for the pressure head  or

(1-48)

for the saturation  as primary variable according
to the switching criteria stated above. The Newton iter-
ations are repeated until a satisfactory convergence is
achieved, such as

(1-49a)

with

(1-49b)

and where  can be used as a RMS ( , eqn

(1-43)) or maximum ( , eqn (1-44)) error norm.

STEP 2: Tactic of time stepping at successful Newton
convergence
If Newton iterations have converged a new provisional
step size  can be computed in the following way:

(1-50)

where  is a time step multiplier. The latter is deter-
mined by the minimum ratio of prescribed target
change parameters DXWISH (DSWISH for the satura-
tion  and DPWISH for the pressure head )
to the Newton correction, namely

(1-51)

Additionally, it can be useful to constrain both eqn (1-
50) by a maximum time step size ( ) and
eqn (1-51) by a maximum multiplier
( ).

STEP 3: Tactic of time stepping if Newton iteration
fails
The convergence criterion for the Newton method is
given by eqn (1-49a). If the Newton scheme does not
converge within a maximum number of nonlinear itera-
tions  (say 12) the current time step has to
be rejected. A reduced time step size is then computed
by

(1-52)
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and the solution process is restarted for the current time
plane , but with . The time step
divider TDIV is usually 2 (sometimes a larger value, e.
g. 10, can be useful). Additionally, the behavior of the
residual  can be monitored during the itera-
tions. Taking a RMS norm of the residuals at the cur-
rent  and previous stages  the
iterative process is interrupted as soon as the residual
stops to decrease  at a certain iter-
ate ( ).

In the TBFN technique the step size is controlled so
that the Newton corrections hit, or are less than, the tar-
get change parameters DXWISH. It makes use of the
fact that the formulation is mass-conservative for an
arbitrary implicit time step size. Indeed, this aggressive
time stepping control can be very efficient in finding
steady-state solutions, if such solutions exist. But in
transient situations, it appears as an error-prone strat-
egy in a potential lacking of temporal accuracy, regard-
less of the good mass-conservative properties of the
scheme. In the examples shown below we shall see
partly significant differences between the results of the
PCOSN and TBFN schemes.

NKSKP `çåîÉêÖÉåÅÉ=ÅêáíÉêáçå

An important aspect of the iterative solution via the
PCOSN and TBFN schemes is the choice of an appro-
priate convergence criterion. The one-step Newton
approach of the PCOSN assumes a deviatory (change)
error measure  which is a function of

, cf. eqns (1-42a), (1-43) and (1-44).
The advantage of the PCOSN is that it controls both the
truncation and the iteration errors by only one user-

specified tolerance . To make the TBFN comparable
to the PCOSN scheme we use an equivalent deviatory
error norm  as a function of ,
cf. eqns (1-49a) and (1-49b). Such a convergence crite-
rion represents a standard test and is commonly used
for Newton methods11.

Other convergence criteria can sometimes be useful.
Instead of the deviatory error estimate , the
residual  may be directly controlled. It repre-
sents a direct measure of the global mass balance error
after terminating the Newton iteration. For instance one
can enforce the condition

(1-53)

where a second tolerance  is introduced and an
appropriate normalization of the residual (here with
respect to the external supply ) is required. Such
a convergence control would mean that the one-step
Newton approach is no more applicable and that the
predictor-corrector scheme has to be controlled by both

 and , where  measures the temporal discretiza-
tion error and  measures the global mass balance
error. More than one iteration (we need at least two
steps) is then required per time step, making the predic-
tor-corrector technique less attractive. Unlike the
PCOSN, the TBFN technique has only one control
statement (1-49a) and, of course, it is easy to replace
(1-49a) by (1-53).

In the present study we do not use the condition (1-
53). We shall show that the  error norms are
sufficient, at least for the examples considered, to
ensure the overall evolution of the nonlinear process
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under a small global mass balance error .
Additionally, we shall observe  in our exam-
ples and give estimates of the RMS-based integral
(total) mass balance error  at the final simula-
tion time  in the form

(1-54)

Eqn (1-54) measures the ’accumulated loss’ of mass
with respect to the total external supply over the entire
simulation period (0, ). It is an important error mea-
sure to assess the results of long-term simulations, e.g.,
simulations where small residuals are accumulated
over long time periods.

NKT réëíêÉ~ã=tÉáÖÜíáåÖ

Forsyth and Kropinski14 pointed out the necessity of
upstream weighting in unsaturated-saturated problems
to avoid spurious local maxima and minima at coarse
mesh sizes. Monotonicity considerations were applied
to find appropriate evaluation points for the relative
conductivity terms depending on the sign of potential
differences along discrete spans (element edges).
While a central (standard) weighting results from an
average of the relative conductivity at the centroids of
elements, an upstream weighting is obtained if the
evaluation point is shifted upstream in an element. This
technique is different from upwind methods commonly
used for convection-diffusion equations7.

Different approaches exist in unsaturated flow mod-
eling for the representation of material properties. For-
syth and Kropinski14, Simunek et al.42 or Oldenburg
and Pruess34 prefer a nodal representation, where mate-
rial interfaces do not coincide with element boundaries
and elemental properties have to be averaged. In such
an approach upstream weighting points for evaluating
the relative conductivity  can be directly located
between adjacent nodes. Such schemes have proven to
be unconditionally monotone14. 

The present upstream weighting method is based on
an elemental representation of material properties. We
use the following simple procedure to find appropriate
upstream weighting points at an element level. In the
examples studied below the usefulness and success of
this technique will be shown. A theoretical proof of
unconditional monotonicity is, however, beyond the
scope of this paper.

A central weighting is equivalent to the influence
coefficient method using a linear combination of nodal
parameters according to eqn (1-14), where the nodal
basis functions  are evaluated at the
element centroid ( ); , , and  repre-
sent local coordinates of the finite element. Instead of
using the central position, we select an upstream posi-
tion ( ) for computing the relative conductivity
via eqn (1-14). The evaluation point ( ) is used
for Gauss integration of the matrix terms (1-16c) and
(1-16d) and is similar to the Gauss-point-based upwind
technique proposed by Hughes21. To determine the
upstream local coordinates ( ) in 2D and 3D ele-
ments the following method is applied.
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Based on the predicted pressure head  (or
 for the TBFN scheme) a specific flux can be

computed at a central position of an element 

(1-55)

and, the trajectory of the vector  can be easily
found. Along the trajectory, in the upstream direction,
the upstream position ( ) is set at the intersection
with the element border (Fig. 1.1). 

For the element level  the relative conductivity
 is evaluated at the upstream point as

(1-56)

where  represents the nodal relative conductivi-
ties computed as a function of the nodal saturation

 (or pressure head ). With the upstream point
( ) the relative conductivity  is evaluated only
along element edges. For instance, considering the situ-

ation in Fig. 1.1 for a 2D isoparametric finite element,
 is -1 and , from eqn (1-56), becomes independent

of nodes 3 and 4, viz., .

NKU páãìä~íáçåë

The following examples are used to benchmark the
primary variable switching technique combined with
the PCOSN time marching procedure against tradi-
tional and alternative solution strategies. Its efficiency
is demonstrated by means of applications where other
schemes fail or run eventually into difficulties. The
control parameters enforced in these examples are the
primary variable switching tolerances (1-26)13

(1-57)

and the tolerance  encompassing both the time trun-
cation error measure and the Newton convergence cri-
terion is

(1-58)

using the RMS error norm (1-43) as the default options.
Exceptions will be indicated. Since the proposed
schemes are mass-conservative the balance error is a
function of the error tolerance . This parameter is
very important, but its significance with respect to
mass balance should not be over-interpreted. As
already pointed out by Kirkland et al.26 a good mass
balance does not mean that the distribution of mass
across the system has been correctly evaluated. This
will be shown in the case of the TBFN time stepping
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Figure 1.1 Upstream local coordinates 
in a 2D finite element.
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strategy where the following aggressive target change
parameters

(1-59)

will be used13. In the TBFN solution technique tempo-
ral nonlinear discretization errors may occur due to a
fast-but-coarse time stepping. The total mass balance
errors will be quantified by the  estimate (1-
54).

The large target change parameters (1-59) were
used by Forsyth et al.13 to illustrate the robustness of
the variable switching technique. They did not intend
to consider the time truncation errors arising for the
large time step sizes generated. Clearly, employing
smaller target change parameters would lead to smaller
time step sizes and to reduced time truncation errors.
But, due to the empirical nature of the control parame-
ters for the TBFN strategy, an optimal parameter
choice is not easy and a normal user would likely tend
to accept a solution at an ’efficient’ time step size as
soon as the solution has converged.

It should be noted that spatial discretization errors
due to mesh effects are not controlled by  (this would
require a fully adaptive solution strategy similar to6 and
represents a future challenging problem in unsaturated
flow). Instead, spatial discretization effects are ana-
lyzed by comparing different mesh resolutions when-
ever available and appropriate.

NKUKN fåÑáäíê~íáçå= áå= ÜçãçÖÉåÉçìë
~åÇ=áåÜçãçÖÉåÉçìë=ëçáä=Åçäìãåë
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Celia et al.4 introduced a modified Picard method
for the mixed ( -) form of the Richards equation to
study water infiltration in a homogeneous soil column
with the following parameters41: column length of 1 m,
van Genuchten-Mualem parametric model (1-3), (1-4)
in using n = 2, (m = 0.5),  = 3.35 1/m,  = 0.368,  =
0.277, and  = 1.0, isotropic saturated conductivity of

 m/s, vanishing compressibility , zero
air-entry pressure head  = 0, constant pressure head

 = -0.75 m at the top and  = -10.0 m at the bottom,
and initial pressure head  = -10.0 m. We choose an
initial time step size of  d. The same spatial
discretization characteristics as given in4 are applied,
where  = 0.5 cm (dense grid) and  = 2.5 cm
(coarse grid). In4 dense-grid simulations were per-
formed with a constant time increment of  = 60 s,
which means their ’best’ solutions for a simulation
time of 1 day were obtained after 1440 time steps plus
a number of unreported Picard steps.

Figure 1.2 compares the pressure profiles computed
by the PCOSN scheme with Celia et al.’s solution for
the dense grid at a simulation time of 1 day. The agree-
ment is quite perfect if using the standard central
weighting scheme. Clearly, for this problem an
upstream weighting is numerically not required
because the central weighting solutions are non-oscilla-
tory. Nevertheless, if applying upstream weighting a
typical phase lead error appears as seen in Fig. 1.2. It is
important to note that the same curves are generated for

DSWISH 0.4=
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TMBE T( )

δ
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α ε sr
ss

0.922 10 4–⋅ So 0≈
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both the first-order accurate FE/BE and the second-
order accurate AB/TR PCOSN schemes. Furthermore,
if relaxing the error bound  to  the FE/BE
scheme still gives identical results, but the AB/TR
began to fail in producing nonlinear wiggles. 

Alternatively, if we use a Newton mixed ( )-
form scheme, cf. eqn (1-30), where the primary vari-
able is always the pressure head , with a FE/BE time
marching strategy the same results as outlined in Fig.
1.2 are obtained. However, compared to the PCOSN
variable switching, more than thrice the number of
Newton steps are required for the same error parameter.
Table 1.1 summarizes the solution effort needed for the
different predictor-corrector schemes and error toler-
ances.

Figure 1.3 presents a comparison of the dense and
coarse grid solutions to illustrate spatial discretization
effects. As shown, a significant phase lead and a some-
what smeared pressure profile result. A similar effect is
also obtained if an inappropriate time stepping is
selected as displayed in Fig. 1.4. The TBFN scheme
requires only a small number of Newton steps as sum-
marized in Table 1.2. Solutions were obtained up to
five times faster than the PCOSN and up to eighteen
times faster than the Newton mixed ( )-form under
comparable conditions. The price to pay for that is a
remarkable loss of accuracy (Fig. 1.4). It is important
to indicate that this effect is independent of the Newton
convergence limit . We obtained the same leading
curve behavior if decreasing  (down to ). As
given in Table 1.2 the TBFN scheme takes 18 time
steps for a constraint of . Only when we
increase the number of time steps (e. g., enforce an
unusual constraint of ) the accuracy
improves (cf. Fig. 1.4). This clearly indicates that the
error of the TBFN scheme is caused by temporal dis-
cretization, which will be further discussed below.
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Figure 1.2 Pressure profiles at t = 1 day for the dense
grid: PCOSN results for central and upstream weighting
(both FE/BE and AB/TR scheme) with error 
in comparison with Celia et al.’s results4,41.
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The time behavior of the residual error  is
plotted in Fig. 1.5 for the TBFN and PCOSN schemes.
While the PCOSN terminates with errors in the range
of - , the TBFN produces  errors
smaller than  with the limit of  for a
RMS error convergence criterion (1-43). The total
mass balance error , eqn (1-54), can be
estimated at  for the PCOSN and  for
the TBFN.
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Figure 1.3 Pressure profiles at t = 1 day computed by the
PCOSN scheme (central weighting) with error

 for the dense and coarse grid.δ 10 4–=
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Figure 1.4 Computed pressure profiles at t = 1 day for
the PCOSN scheme (with ) and the TBFN
scheme (using ) at unconstrained
( ) and constrained ( ) time step-
ping; dense grid and central weighting.

δ 10 4–=
δ 10 4– … 10 6–, ,=

Ξmax ∞= Ξmax 1.1=
OU=ö=tÜáíÉ=m~éÉêë=J=sçäK=f



NKU=páãìä~íáçåë
*) Including rejected steps

Table 1.1 Solution effort needed for the PCOSN variable switching scheme compared to the Newton mixed 
(ψ-s-) form solution (dense grid, simulation time 1 day)

Scheme Type Weighting Error δ Actual time 
steps

Total 
Newton 
steps*)

Efficiency

PCOSN FE/BE central 437 443 1.

PCOSN FE/BE upstream 379 386 .87

PCOSN FE/BE central 283 352 .79

PCOSN FE/BE upstream 148 151 .34

PCOSN AB/TR central 436 580 1.31

PCOSN AB/TR upstream 330 355 .80

PCOSN AB/TR central failed failed -

PCOSN AB/TR upstream failed failed -

mixed FE/BE central 1406 1556 3.51

mixed FE/BE upstream 1270 1353 3.05

mixed FE/BE central 430 477 1.08

mixed FE/BE upstream 388 431 .97

10 4–

10 4–

10 3–

10 3–

10 4–

10 4–
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*) Including rejected steps

Table 1.2 Solution effort for the TBFN scheme using fully implicit time stepping and central weighting 
(dense grid, simulation time 1 day)

Error δ Constraint Weighting Actual time 
steps

Total Newton 
steps*)

Efficiency (Tab. 
1.1)

central 8 88 0.2

upstream 5 63 0.14

2 central 18 85 0.19

2 upstream 18 94 0.21

1.1 central 97 263 0.59

1.1 upstream 97 309 0.70

2 central 18 65 0.15

2 upstream 18 70 0.16

2 central 18 96 0.22

2 upstream 18 120 0.27

2 central 18 102 0.23

2 upstream 18 143 0.32

Ξmax

10 4– ∞

10 4– ∞

10 4–

10 4–

10 4–

10 4–

10 3–

10 3–

10 5–

10 5–

10 6–
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Van Genuchten44 describes results for moisture
movement in a layered soil. A soil column with a
length of 170 cm includes 4 layers: clay loam (0-25
cm), loamy sand (25-75 cm), dense material (75-87
cm) and sand (87-170 cm), where the loamy-sand layer
properties change gradually with depth. The initial con-
ditions for the flow are given by  = -3.5 m. A con-
stant flux is specified at the surface  = -0.25 m/d for

day (infiltration) and  = 0.005 m/d for day
(evaporation). At the bottom, a drainage gradient-type
boundary condition of = 4 m/d is
imposed8. Accordingly, the bottom boundary can freely
drain29. The parameters of the constitutive relations
(van Genuchten-Mualem model) are fully listed in41.

The column is discretized in 170 elements, i.e.,  = 1
cm. The initial time step is  d.

This problem is not particularly difficult to solve,
since the initial conditions are not very dry. All formu-
lations and schemes were successful. Their results are
in good agreement with van Genuchten’s solutions as
shown in Fig. 1.6 for the infiltration period. Differ-
ences between central and upstream weighting are also
exhibited in Fig. 1.6. To study the merits and solution
efforts of the different numerical schemes for this het-
erogeneous system, let us focus on the saturation pro-
file computed at the end of the infiltration period (t = 1
d) under low and extremely high initial suction condi-
tions .

Using the PCOSN scheme with FE/BE and central
weighting the computed saturation profiles at t = 1 d is
shown in Fig. 1.7 for different . As expected, at very
dry initial conditions the saturation profile remains
unchanged, proving thus the good conservative proper-
ties of the variable switching technique. Practically any
arbitrary large value of initial suction can be enforced.
In contrast to this, standard formulations using the
pressure head  as primary variable can run into diffi-
culties or completely fail. Especially for very dry con-
ditions there is practically no way to find reasonable
convergent solutions in acceptable times. Figure 1.8
shows the results for both the mixed ( )-form with
Newton iteration (comparable to eqn (1-30)) and the
standard -form with Picard iteration and chord slope
approximation. As seen at low suction (  = -3.5 m)
the schemes yield the same results. However, already
for  = -10 m the standard -form reveals mass-con-
servative problems (phase lag). The phase lag error
dramatically grows at higher initial suctions as evi-
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Figure 1.5 History of residual error  for the TBFN
and PCOSN schemes with , RMS error conver-
gence criterion (1-43) and central weighting.
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denced in Fig. 1.8 for  = -  m. On the other hand,
the conservative mixed ( )-form provides better
results, though not without a phase lag error at 
= -  m (Fig. 1.8) in comparison to the good PCOSN

results (Fig. 1.7). We were not able to find convergent
solutions for both the mixed ( )-form and the stan-
dard -form at higher suction values (  m).

A comparison of the PCOSN and the TBFN vari-
able switching schemes is given in Fig. 1.9. At low suc-
tion values the differences can be seen in the typical

lead effects in the saturation profile. This is caused by
the poorer temporal accuracy of the TBFN scheme
which takes a much smaller number of time steps than
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Figure 1.6 Simulated moisture-content profiles ( ) during infiltration: present solutions (left) and van Genu-
chten’s results (right), time in days.
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the error-controlled PCOSN scheme. However, under
very dry conditions the differences disappear. For ini-
tial pressure heads smaller than  m the computed
saturation profiles become identical.

Table 1.3 summarizes the solution effort in terms of
time steps and number of iterations for different
schemes depending on the initial suction . The vari-
able switching techniques (PCOSN and TBFN, col-
umns 2-5 of Table 1.3) were successful for all 
considered, while the schemes using the pressure head

 as primary variable (mixed Newton ( )-form
with both PCOSN and TBFN, and standard Picard -
form, columns 6-11 of Table 1.3) have shown unsuit-
able for very dry conditions  m. The most
interesting outcomes of these comparisons are the fol-
lowing:
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Figure 1.7 Saturation distribution at t = 1 day computed by
the PCOSN scheme (FE/BE, central weighting) with error

 for various initial pressure heads  in [m].δ 10 4–= ψ0

0.0 0.5 1.0 1.5
Depth [m]

0.2

0.4

0.6

0.8

1.0

Sa
tu

ra
tio

n 
[1

]

mixed ψ-s-form 
standard ψ-form

-3.5

-10
-103
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For variable switching the TBFN scheme is about
three to five times faster than the PCOSN scheme.
Under very dry conditions the TBFN is definitely supe-
rior to PCOSN since the results are virtually equivalent
(cf. Fig. 1.9). It should be recalled that the PCOSN
scheme is driven by controlling the temporal discreti-
zation error while the TBFN scheme is not. The
required number of time steps increases naturally with
decreasing . At the same time, the number of
rejected steps increases so that the overall effort grows
with decreasing .

The power of the variable switching technique
becomes obvious if comparing it with the  primary
variable solution under the same time stepping strategy.

We additionally applied the TBFN technique to the 
primary variable form, omitting the variable switching.
The computational effort dramatically increases by
orders of magnitude (3 to 168 times slower than the
TBFN with variable switching as indicated by columns
9 vs. 5 of Table 1.3). Similar observations were made
by Forsyth et al.13. It is interesting to note that the
advantage of the TBFN scheme with respect to the
computational effort vanishes for the  primary vari-
able form (with the targets (1-59)). Here, the PCOSN
scheme is comparable or even faster (cf. columns 7 vs.
9 in Table 1.3). However, the TBFN scheme was able
to find convergent solutions for all , but the required
number of Newton steps became extremely large for
very dry conditions, unacceptable for practical model-
ing.

For the variable switching technique we found the
following estimates of the total mass balance error

. At lower suction heads , see Tab.
1.3,  is of  for the PCOSN and

 for the TBFN. At higher suction heads  we
found  of  for the PCOSN and

 for the TBFN.
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Figure 1.9 Comparison of the PCOSN and the TBFN sat-
uration distributions simulated at t = 1 day (FE/BE, cen-
tral weighting) with error  for various initial
pressure heads  in [m].
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1) Additional time constraint  d
2) Including rejected steps

NKUKO aê~áå~ÖÉ=çÑ=~=îÉêó=Åç~êëÉ=ã~íÉJ
êá~ä

The drainage of a very coarse material represents an
interesting and challenging test case. By using a -
curve with no (or negligible) capillarity (very large 

in eqn (1-3) or eqn (1-5)) the medium is at the residual
saturation  very rapidly and the mass balance can be
checked without computing the remaining water in the
drained area. The problem is described in Fig. 1.10.
Due to the large -parameters the numerical simula-
tion becomes difficult for an unsaturated-saturated
modeling approach (in contrast to a much easier free-
surface modeling approach as discussed in8). The prob-
lem is solved by using both the van Genuchten-
Mualem (1-3) and the Brooks-Corey (1-5) constitutive

Table 1.3 Solution effort for different schemes (simulation time 1 day, FE/BE, central weighting, error 
, time constraint )

Initial 
pressure 
head  

[m]

Variable switching Primary variable 

PCOSN TBFN1)
Mixed ( )-form,
Newton, eqn (1-30)

Standard -form,
Picard, 

eqn (1-32)PCOSN TBFN1)

Time 
steps

Total 
Newton 
steps 2)

Time 
steps

Total 
Newton 
steps 2)

Time
steps

Total 
Newton 
steps 2)

Time 
steps

Total 
Newton 
steps 2)

Time 
steps

Total 
Picard 
steps 2)

1 2 3 4 5 6 7 8 9 10 11

-3.5 358 360 32 109 634 638 43 292 643 648

-10 676 684 34 171 1824 2112 154 1535 1760 2021

-103 1510 2187 66 580 4202 4792 929 9186 1128 1472

-104 1990 3254 76 673 failed 1247 11535 failed

-105 2180 3858 97 831 failed 1539 14138 failed

-106 2696 4988 115 952 failed 155025 159641 failed
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relationships. The latter offers the advantage to choose
the  relationship (1-6) independently of the -
curve (1-5). 

In this context an analytical expression for the water
table descent can be easily derived as

(1-60)

where  is the water table elevation.

Integrating this equation yields

(1-61a)

and

(1-61b)

Table 1.4 lists the analytical results at given relative
drawdown . The domain is discretized in 200 quadri-
lateral finite elements (  = 6.5 cm), where the origi-
nal problem (Fig. 1.10) can be modelled by a straight
13-m-long strip. The initial time step is  d.
For this example the PCOSN scheme with FE/BE
using  is selected.

Initially, the domain is fully saturated at  = 6 m
and compressibility  initiates the drainage process.
Using the strong van Genuchten parameters as stated in
Fig. 1.10 only the variable switching technique was
successful while the mixed ( )-form ran into sig-
nificant convergence difficulties and the standard -
form even completely failed. The computational results
for the PCOSN scheme are listed in Table 1.5. The
agreement with the analytical results (Table 1.4) is
quite good. The solution needs a rather large number of
Newton steps (6063 for a simulation time of 1 day with
central weighting). However, one can relax (smooth)
the problem when setting the parameters equivalent to
a free-surface approach8. In this case we prefer the
Brooks-Corey parametric model (1-5) and (1-6) with
the following ’simplified’ data: 
1/m, n = 1, and . The central weighting solution
with these Brooks-Corey parameters requires 2544
Newton steps for a 1-day simulation. Note that the
reduction of the exponent  to unity is somewhat arti-
ficial. However, it is acceptable for this water table
problem (see the results presented in Table 1.5 in com-
parison to the analytical results of Table 1.4).

Kr s( ) ψ s( )

dh
dt
------  K

ε ss sr–( )
---------------------- h t( )

h t( ) L+
-------------------–=

h t( )

x

z

Q(t)

h(t)

6 
m

L = 7 m

A = 1 m

at sr

at ss

h = h0 = 6 m

Figure 1.10 Sketch of the drainage problem.

K 10 4–   m/s=
ε 0.33333=

So 10 12–  1/m=

ss 1=

sr 0.1=

n 2=

α 104 1/m=

t
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K
---------------------- h0 1 ϕ–( ) L ϕln⋅–[ ]= ϕ h t( )

h0
---------=

Q t( ) KA ϕ

ϕ L h0⁄+
---------------------- 

 =

ϕ
∆z

∆t0 10 18–=

Ξmax 2=

h0

So

ψ s–
ψ

α 1 ∆z 2⁄( )⁄≈ 31=
κ 1=

κ
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Table 1.4 Analytical results

t [d] Q [m3/d]

1. 0 3.987692 0

.75 .122006 3.380870 .45

.50 .272640 2.592000 .9

.25 .493197 1.524706 1.35

.0372872 1. .267586 1.789

0 0 1.8

Table 1.5 Numerical results computed by the PCOSN variable switching technique ( , central 
and upstream weighting, FE/BE, )

t [d]

van Genuchten model:
 1/m, n = 2

Brooks-Corey model:
 1/m, n = 1,  = 1

central weighting central weighting upstream weighting

Q [m3/d] Q [m3/d] Q [m3/d]

3.9876 3.9618 3.9603

.122006 3.3669 .4454 3.2917 .4407 3.2715 .4394

.272640 2.6185 .8884 2.5026 .8783 2.4722 .8722

.493197 1.5803 1.328 1.4703 1.313 1.4434 1.300

1. .3285 1.727 .2742 1.686 .2679 1.665

ϕ Q t( ) td
0

t

∫

∞

δ 5 10 5–⋅=
Ξmax 2=

α 104= α 31= κ

Q t( ) td
0

t

∫ Q t( ) td
0

t

∫ Q t( ) td
0

t

∫

10 8– 3.5 10 8–⋅ 5.2 10 8–⋅ 4.0 10 8–⋅
cbcilt=ö=PT
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The upstream weighting was not successful for the
van Genuchten model. Applying the Brooks-Corey
model with central and upstream weighting gave com-
parable results as listed in Table 1.5. The number of
Newton steps slightly increased to 2818 for a 1-day
simulation if upstream weighting was applied.

In estimating the  error (1-54) we
found  for both the van Genuchten model and
the Brooks-Corey model. This estimate is conform to
the mass defects which are detected in the comparisons
of the numerical results of Table 1.5 to the analytical
results of Table 1.4.

NKUKP mÉêÅÜÉÇ=ï~íÉê=í~ÄäÉ=éêçÄäÉã

Kirkland et al.26 presented a two-dimensional prob-
lem of a developing perched water table surrounded by
very dry unsaturated conditions. It is a good test prob-
lem to show the variable switching ability in both
unsaturated and saturated zones. The problem is
described in Fig. 1.11. Water infiltrates with a very
large rate into a dry soil at  = -500 m and encounters
a clay barrier which allows for the formation of a
perched water table. All boundaries are no flow except
where the infiltration is imposed. The material proper-
ties of the problem are summarized in Table 1.6 for the

van Genuchten-Mualem parametric model. Both the
PCOSN and the TBFN scheme are used with 
and  d. Additionally, TBFN is constrained
by . The symmetric half of the domain is dis-
cretized in a 50x60 quadrilateral mesh (3111 nodes)
according to the spatial discretization used by Kirkland
et al.26 and Forsyth et al.13.

TMBE T 1 d=( )
O 10 2–( )

ψ0

δ 10 4–=
∆t0 10 5–=

Ξmax 2=

qn = 0.5 m/d

Sand

Clay

Sand

1 m
4 m

5 m

3 
m

2 
m

1 
m

ψ0 = -500 m

Figure 1.11 Perched water table problem (modified
from26).

Table 1.6 Material properties for the perched water table problem

Material K [m/s]  [1]  [1]  [1/m]  [1]

Sand .3658 .07818 2.80 2.2390

Clay .4686 .2262 1.04 1.3954

ε sr α n

6.262 10 5–⋅

1.516 10 6–⋅
PU=ö=tÜáíÉ=m~éÉêë=J=sçäK=f
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A comparison of the pressure contours at 1 day with
Kirkland et al.’s results reveals an acceptable agree-
ment as displayed in Fig. 1.12. The zero pressure con-
tours agree quite well while the -4000 kPa isobar
equivalent of Kirkland et al.’s results is slightly ahead,
forming a more diffusive vertical pressure front com-
pared to the present solution. The higher sharpness of
the present profile is also identified in comparison to
Forsyth et al.’s saturation contours (Fig. 1.13). Forsyth
et al.13 used an aggressive target-based time marching
scheme similar to the present TBFN method and got
the solution after 120 Newton steps. The present
PCOSN and TBFN schemes needed many more steps
with the given control parameters. This is probably due
to a lack of smoothness in the parametric curves near
full saturation. The variable switching technique for the
PCOSN (FE/BE) technique at central weighting
required 1211 time steps and 1556 Newton steps,
meaning that about 30% of the steps had to be rejected
and repeated. In contrast, the TBFN scheme became
less efficient. Only 582 time steps were needed but the
total number of Newton iterations increased to 3381
steps. Similar results were found for upstream weight-
ing. Pressure and saturation profiles are given in Figs.
1.12 and 1.13, respectively.

As displayed in the time step histories for both
schemes in Fig. 1.14 the TBFN scheme progresses
faster at the beginning, while the PCOSN scheme takes
smaller step sizes due to the temporal discretization
accuracy requirements. As soon as the perched water
table is formed (nodes become saturated) the conver-
gence criterion of the TBFN scheme forces smaller
steps. The aggressive selection strategy leads to a rapid
growth of the provisional time step size. However, the
latter is invariably too large for the convergence of

Newton iterations and the larger step sizes have to be
discarded. Oscillations in the step size result in the poor
performance of the TBFN scheme for the present prob-
lem, whereas the PCOSN solution strategy is not
affected by such oscillations. Apparently, the TBFN
strategy can be improved by refining the time stepping
control (e.g., introducing a multiple set of decision
parameters). To this end, Forsyth and Simpson12 pro-
posed a manual monitoring via a file-based checking
procedure.
cbcilt=ö=PV
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Figure 1.12 Simulated pressure contours at t = 1 d: a) present results, PCOSN and TBFN, FE/BE, central and upstream
weighting, pressure contours in [kPa], lengths in [m]; b) Kirkland et al.’s results26, pressure head contours in [cm], lengths
in [cm].
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Figure 1.13 Simulated saturation contours at t = 1 d: a) present results, PCOSN and TBFN, FE/BE, central and upstream
weighting, lengths in [m]; b) Forsyth et al.’s results13; - - - one phase, upstream weighting; . . . one phase, central weight-
ing; ____ two phases, upstream weighting, lengths in [cm].
QM=ö=tÜáíÉ=m~éÉêë=J=sçäK=f



NKU=páãìä~íáçåë
The simulations with the PCOSN and TBFN
schemes give identical results (Figs. 1.12 and 1.13)
because the required step number is sufficiently high
and meets the accuracy requirements. Considering the
results found in the above sections, the differences
between the present and Kirkland et al.’s as well as
Forsyth et al.’s results can mainly be attributed to tem-
poral discretization effects. Typically, a smaller step
number generates a phase lead and a smoother front.
This will be also confirmed in the following examples.

The  balance error (1-54) was found
to be of  for the PCOSN and of  for the
TBFN scheme.

NKUKQ fåÑáäíê~íáçå=áå=~=ä~êÖÉ=Å~áëëçå

NKUKQKN cçêëóíÜ=Éí=~äKÛë=éêçÄäÉã

The infiltration process in a large caisson consisting
of heterogeneous materials at dry initial conditions has
been thoroughly studied by Forsyth et al.13. We choose
this problem to show the power of the variable switch-
ing technique and to identify solution differences
caused by the time stepping and iteration control alter-
natives. Figure 1.15 presents a schematic view of the
2D cross-sectional problem. All boundaries are imper-
vious except the infiltration boundary section on top.
Two initial pressure head conditions of = -7.34 m
and = -100 m are simulated. Table  lists the material
properties used for the different zones of the domain.
Both the PCOSN and the TBFN schemes are applied
with ,  d (TBFN is again con-
strained by ) with central and upstream
weighting. Fully implicit FE/BE strategies are selected.
The spatial discretization is 90x21 quadrilateral ele-
ments (1890 nodes) as in Forsyth et al.13.

Based on the given control parameters the TBFN
scheme was about four times faster than the PCOSN
scheme as indicated in Table 1.8. On the average 3 to 4
Newton steps were required for the TBFN strategy at
each time step. The PCOSN scheme provided a quite
perfect time stepping control without repeated time
steps. The extra costs for the PCOSN scheme are
reflected by an increased temporal accuracy, as
required by the error control. The results at 30 days can
be seen in Figs. 1.16 and 1.17 for = -7.34 m and

= -100 m, respectively, in comparison to Forsyth et
al.’s findings13.

0.0 0.2 0.4 0.6 0.8 1.0
time t [d]

10-6

10-5

10-4

10-3

10-2

10-1

100

st
ep

 si
ze

 ∆
t n [

d]

TBFN
PCOSN

Figure 1.14 Time step histories of the perched water
table problem for the TBFN and PCOSN schemes (FE/
BE, central weighting) using  and

d (  for TBFN); required time
steps: 582 (Newton 3381) for TBFN and 1211 (Newton
1556) for PCOSN.

δ 10 4–=
∆t0 10 5–= Ξmax 2=

TMBE T 1 d=( )
O 10 4–( ) O 10 5–( )

ψ0

ψ0

δ 10 4–= ∆t0 10 3–=
Ξmax 2=

ψ0

ψ0
cbcilt=ö=QN
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Surprisingly, the PCOSN results are rather depart
from the TBFN results, especially for the case

= -7.34 m. The saturation front is significantly dif-
fused by the ’low-cost’ TBFN simulation using the
’aggressive’ control parameters (1-59) while the
PCOSN provides a much steeper saturation profile.
Expectedly, Forsyth et al.’s results13 agree quite well
with the poorer TBFN solutions since they performed
an even smaller number of Newton steps (29 steps at

= -7.34 m and 48 steps at = -100 m, for central
weighting). This example clearly illustrates how far a
seemingly accurate, convergent and efficient solution
can be from a more accurate prediction independent of
the use of central and upstream weighting. Control
parameters smaller than (1-59) have to be chosen for
the TBFN to enforce smaller time step sizes and to find
results comparable to the PCOSN.

 

Table 1.7 Material properties for Forsyth et al.’s problem (van Genuchten-Mualem parametric model)

Zone K [m/s]  [1]  [1]  [1/m]  [1]

1 .3680 .2771 3.34 1.982

2 .3510 .2806 3.63 1.632

3 .3250 .2643 3.45 1.573

4 .3250 .2643 3.45 1.573

ε sr α n

9.153 10 5–⋅

5.445 10 5–⋅

4.805 10 5–⋅

4.805 10 4–⋅

ψ0

ψ0 ψ0

qn = 0.02 m/d

Zone 3

8 m

(1) ψ0 = -7.34 m

(2) ψ0 = -100  m

Zone 1
Zone 2

Zone 4

6.
5 
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1 
m

4 
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1 m 2 m
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m
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5 
m

Figure 1.15 Forsyth et al.’s infiltration problem (modified
from13).
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Table 1.8 Solution effort for Forsyth et al.’s problem (FE/BE)

= -7.34 m = -100 m

PCOSN TBFN PCOSN TBFN

central up-
stream central up-

stream central up-
stream central up-

stream

Time steps 199 174 15 15 279 251 16 15

Total Newton steps 200 174 51 67 279 251 69 69

ψ0 ψ0

0

0

2
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6
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8

8

0 0

2 2

4 4

6 6

PCOSN, central

TBFN, central

a) b)

PCOSN, upstream

TBFN, upstream

Figure 1.16 Computed saturation contours at t = 30 d, initial pressure head  = -7.34 m: a) present solutions by PCOSN
and TBFN, central and upstream weighting, lengths in [m]; b) Forsyth et al.’s results13; - - - one phase, upstream weighting;
. . . one phase, central weighting; ____ two phases, upstream weighting, lengths in [cm].
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It is apparent that the present problem is sensitive to
discretization errors. The influence of the spatial dis-
cretization is illustrated in Fig. 1.18 for the case

= -100 m. The results of structured coarse meshes
(90x21 and 21x90 nodes) are compared to a dense
unstructured mesh consisting of 56,960 triangular ele-
ments (28,917 nodes). This dense mesh is generated by

splitting each quadrilateral into two triangles followed
by a double total refinement into four triangles
(20x89x2x4x4). It shows how a coarse meshing in one
direction can lead to phase lag errors and smearing of
the saturation profiles.
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8
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PCOSN, central

TBFN, central
PCOSN, upstream
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Figure 1.17 Computed saturation contours at t = 30 d, initial pressure head  = -100 m: a) present solutions by PCOSN
and TBFN, central and upstream weighting, lengths in [m]; b) Forsyth et al.’s results13; - - - one phase, upstream weight-
ing; . . . one phase, central weighting; ____ two phases, upstream weighting, lengths in [cm].
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The history of the residual error  depending on
the selected time stepping schemes and the initial pres-
sure head  is plotted in Fig. 1.28. The one-step New-
ton scheme (PCOSN) terminates with errors of

 while the TBFN is, at least, one order better.
This naturally results from the full Newton technique
incorporated in the TBFN, where, at least, two iteration
steps are performed and convergence in the residuals

 is quadratic. Accordingly, we estimate a
 of  for the PCOSN and of

 for the TBFN.

NKUKQKO cçêëóíÜ=~åÇ=hêçéáåëâáÛë=éêçÄäÉã

Forsyth and Kropinski14 modified the above infiltra-
tion problem of Fig. 1.15 by increasing the pore size
distribution index  to 5 for the zones 3 and 4. The
other parameters remain unchanged and correspond to
Table . This increase of  makes the capillary pressure
curve very flat at intermediate saturation values and
spurious local maxima and minima can result for
coarse meshes. This is shown in Fig. 1.20 for a struc-
tured 90x21 nodal meshing and a central weighting.
The comparison with Forsyth and Kropinski14 indicates
mesh effects. Although using the same mesh, differ-
ences at material interfaces and at the bottom of the

dense mesh
90x21 nodal meshing
21x90 nodal meshing

0

0

2

2

4

4

6

6

8

8

0 0

2 2

4 4

6 6

Figure 1.18 Influence of spatial discretization, computed
saturation contours at t = 30 d, initial pressure head  = -
100 m: dense mesh consists of 56,960 triangles and 28,917
nodes, central weighting, PCOSN (FE/BE) scheme with
2507 implicit time steps and 3596 Newton steps, lengths in
[m].
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time t  [d]

Figure 1.19 History of residual error  for the TBFN
and PCOSN schemes with , RMS error conver-
gence criterion (1-43), central weighting and 90x21 mesh.
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caisson are detected. These may result from different
nodal spacing at these locations. The PCOSN required
1202 time steps with 2015 Newton steps, whereas the
TBFN only took 146 time steps and 809 Newton itera-
tions. As shown in Fig. 1.20 the reduced stepping by
TBFN leads to smearing and phase lead errors, how-
ever, only for the advanced saturation contours while
the remaining part is close to the PCOSN results.

Upstream weighting can be used to damp out the
spurious oscillations in the saturation distributions.
Figure 1.21 compares the present upstream solution
with Forsyth and Kropinski’s result. The agreement is
quite good. Both upstream techniques damp out the
wiggles appearing in the central weighting solutions
(Fig. 1.20). Differences in the lag of the saturation pro-

file are probably due to the different nodal spacing used
in the present and Forsyth and Kropinski’s14 solutions.

A more appropriate meshing of the problem (i.e.,
21x90 instead of 90x21) can considerably improve the
results (Figs. 1.22(a) and 1.22(b)). The solution can be
compared to the results obtained with the dense mesh
(28.917 nodes) shown in Fig. 1.23. Sharper saturation
contours occur at the material interfaces. The medium
becomes fully saturated at the bottom of the caisson
forming a typical saturation ’tongue’. Its size is quite
sensitive to spatial and temporal discretizations as
revealed by the comparison to Fig. 1.22. In contrast,
Forsyth and Kropinski14 predict a lead in the saturation
pattern (Fig. 1.22(b)).
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Figure 1.20 Saturation contours at t = 30 d, initial pressure head  = -100 m, and central weighting: a) present solutions
by PCOSN and TBFN, 90x21 nodal meshing; b) Forsyth and Kropinski’s results14; lengths in [m].
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Figure 1.21 Saturation contours at t = 30 d, initial pressure head  = -100 m, and upstream weighting: a) present solu-
tions by PCOSN and TBFN, 90x21 nodal meshing; b) Forsyth and Kropinski’s results14; lengths in [m].
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In checking the mass balance errors , eqn
(1-54), we estimate the same order as indicated in the
above problem of section 1.8.4.1:  of

 for the PCOSN and of  for the TBFN.
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Figure 1.22 Saturation contours for refined meshes at t = 30 d, initial pressure head  = -100 m, and central weighting: a)
present solutions by PCOSN, 21x90 nodal meshing; b) Forsyth and Kropinski’s results14; lengths in [m].
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In unsaturated flow conditions a capillary barrier
often appears at the contact of a layer of fine soil over-
lying a layer of coarse soil34,48. If the layer interface is
tilted, moisture infiltrating in the fine layer will be
diverted and flow down the contact. In practical appli-
cations, a capillary barrier can be built by placing a fine
layer (e.g., fine sand) over an inclined coarse layer
(e.g., gravel). To simulate capillary barriers numerical
schemes have to tackle large parameter contrasts,
highly exaggerated and distorted geometries as well as
very dry initial conditions. Focusing on steady-state

solutions, which are of the most practical interest here,
and assuming that there is no bifurcation in the devel-
opment of the capillary diversion, the TBFN scheme
seems be the most effective solution technique for this
class of problems.

NKUKRKN tÉÄÄÛë=éêçÄäÉã

Oldenburg and Pruess34 presented a first numerical
study of a 2D tilted capillary barrier. To find reasonable
results they introduced an upstream weighting method.
However, both from the qualitative and quantitative
point of view their results became generally poor and
no agreement with analytical results40 could be
achieved. More recently, Webb48 could improve the
steady-state results by using an upstream weighting
technique agreeing well with Ross’ analytical
prediction40. We use Webb’s capillary barrier problem48

to study the capability of the variable switching tech-
nique for both central and upstream weighting.

Webb’s capillary barrier consists of a two (fine over
coarse) layer configuration with a total thickness of 1
m. The fine and coarse layers are both 0.5 m thick, and
the dip of the layers is 5% (2.86 ). The parameters of
the two layers are summarized in Table 1.9. The infil-
tration rate at the surface of the domain is 0.0048 m/d.
The left boundary is impervious and the right and bot-
tom boundaries allow for drainage. This can be done in
several ways. We attempted different alternatives: con-
strained point sinks, gradient-type boundary conditions
and potential-type boundary conditions. In consider-
ation of the extreme parameter situation of the fine and
coarse layers (cf. Table 1.9) we found a better conver-
gence behavior for a potential-type boundary condi-
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Figure 1.23 Present saturation contours for the dense mesh
(28,917 nodes) at t = 30 d, initial pressure head  = -100 m,
central weighting, lengths in [m].
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tions, where the hydraulic head  is imposed. Since the
-parameter of the coarse layer is very large the influ-

ence of the location of the water table (the  con-
dition) cannot be significant. It is thus sufficient to set
the water table at the right lower corner of the domain
(at ) and prescribe a  Dirichlet boundary
condition along the bottom and the right boundaries. In
accordance with these boundary conditions a corre-
sponding hydrostatic initial condition is assumed, i.e., a
vertical linear distribution of  in the range from 0 to -
6 m. This results in averaged initial saturations  of
0.394872 for the fine layer and 0.02864 for the coarse
layer which is very close to the residual saturations 
(cf. Table 1.9). The model domain is appropriately dis-
cretized in quadrilateral elements as displayed in Fig.
1.24. At the layer contact the element thickness is
0.005 m, and gradually increases with the distance
from the interface. The implicit time stepping (FE/BE)
was used with d.

Surprisingly, the TBFN scheme ran into significant
convergence difficulties. The reason is that a fully satu-
rated zone is quickly formed in the upper layer along
the material interface. Such a situation is similar to the
perched water problem previously studied in section
1.8.3 where the PCOSN scheme became superior to the
TBFN. For the present problem successful solutions
were obtained by PCOSN running over a time period
of 100 days. At this time, the flow budget has reached
equilibrium and the capillary diversion effect has set-
tled down. Due to the sharp parameter contrasts we
select for this task the maximum error norm (1-44)
instead of the integral RMS norm (1-43). Here, an error
tolerance of  turned out to be sufficient.

h
α

ψ 0=

z 0= h 0=

h0

s0

sr

∆t0 10 3–=

δ 10 3–=

Table 1.9 Material properties for Webb’s capillary barrier problem (van Genuchten-Mualem parametric 
model)

Parameter Upper layer (fine) Lower layer 
(coarse)

 [1] 0.39 0.42

K [m/s] 0.1

 [1] 0.394872 0.028571

 [1] 1. 1.

 [1] 5.74 2.19

 [1/m] 3.9 490.

ε

2.1 10 4–⋅

sr

ss

n

α
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Figure 1.25 exhibits the computed saturation distri-
bution at 100 days. It reveals how the saturated zone
has built up along the contact zone in the fine layer
while the saturation in the coarse layer remains only
slightly above the residual saturation. From such a sat-
uration pattern the capillary diversion cannot be identi-
fied. However, the integration of the velocity field in
form of streamlines clearly illustrates the capillary
diversion effects, as shown in Fig. 1.25. The diversion
is maintained up to a certain distance, the diversion
length, past which an amount of water equal to the
infiltration rate enters the coarse layer.

A comparison of the above results with Ross’ ana-
lytical formula40 and the numerical results obtained by
Webb48 can be expressed as a function of the leakage/
infiltration ratio. The theoretical value of the diversion
length determined from Ross’ formula is 32.6 m for the
present parameters (note, Webb48 computed 33.2 m).
As evidenced in Fig. 1.26 there is a good qualitative

and quantitative agreement between the analytical and
the numerical results. Note here that Webb’s solution is
based on an upstream weighting scheme. The present
method was able to find solutions for both central and
upstream weighting. As seen in Fig. 1.26 the differ-
ences between upstream and central weighting are rela-
tively small. Upstream weighting damps the slight
oscillations of the downstream velocity field. The
breakthrough point is not significantly affected.

It should be mentioned that the specific advantages
of the variable switching technique disappear in the
present capillary barrier problem. Since the initial pres-
sures remain moderate and since conservation proper-
ties do not play a role for computing a steady-state
solution, the classic -based form becomes an effec-
tive alternative. We confirmed the above solutions for
the -model (1-32), using the predictor-corrector time
stepping scheme for both FE/BE and AB/TR, and with-
out the Newton method.

100 m

5 
m

1 
m

Figure 1.24 Model domain and mesh (1472 quadrilater-
als with 1551 nodes) for Webb’s capillary barrier
problem48 (exaggeration 10 : 1).
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Figure 1.25 Computed saturation and streamline patterns for Webb’s capillary
barrier48 (exaggeration 10 : 1).
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A different capillary barrier problem has been
recently considered by Forsyth and Kropinski14. The
problem is described in Fig. 1.27. The material proper-
ties and the initial pressure conditions for the different
layers are given in Table . As indicated the initial con-
ditions are very dry. The infiltration rate at the surface
of the cross-sectional domain is 15 cm/yr. The mesh is
shown in Fig. 1.27. It consists of 5002 quadrilateral lin-
ear elements with 5146 nodes. As seen, the element
size is highly variable in the vertical direction. At the
sand-gravel interface the elements have a thickness as

small as 0.002 m. The left and right vertical boundaries
are considered impervious. To model free drainage at
the bottom of the domain the gradient-type boundary
condition = 0.23985 m/d applies
there.
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Figure 1.26 Leakage/infiltration ratio in the coarse layer
for both central and upstream weighting compared to
Ross’ analytical formula40 and Webb’s numerical
results48.
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We used both the PCOSN and the TBFN scheme
with , d and . Due to the
extremely dry initial conditions the PCOSN scheme

required an unacceptable number of time steps. On the
other hand, the TBFN scheme, not constrained by tem-
poral discretization error bounds, provided solutions
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Crushed Tuff
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15 cm/yr

No Flow

No Flow
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Figure 1.27 Capillary barrier model domain (modified from14) and mesh (5002 isoparametric bilinear elements with
5146 nodes).

Table 1.10 Material properties and initial pressure for Forsyth and Kropinski’s capillary barrier problem 
(van Genuchten-Mualem parametric model)

Zone K [m/s]  [1]  [1]  [1/m]  [1]  [kPa]

Loam .452 .0752 4.3 1.246

Sand .345 .046 6.34 1.53

Gravel .419 .074 469. 2.57

Crushed tuff .345 .032 1.43 1.506

ε sr α n ψ0

1.668 10 5–⋅ 106–

6.573 10 5–⋅ 106–

3.502 10 3–⋅ 30–

2.776 10 6–⋅ 6 1010⋅–

δ 10 4–= ∆t0 10 5–= Ξmax 5=
RQ=ö=tÜáíÉ=m~éÉêë=J=sçäK=f
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with a much smaller number of time steps (and Newton
steps).

We ran the problem for a simulation time of 30
years with the TBFN and applying both the  (1-43)
and  (1-44) error norms for terminating the Newton
iteration. The evolution of the residual error  for
both norms is depicted in Fig. 1.28. It reveals that the

 criterion produces residuals in the range  to
 [m3/d]. For this case the integral total mass bal-

ance error is , which can-
not be tolerated. The results for the  criterion is
better by about one order (cf. Fig. 1.28) and gives

. Accordingly, only the
results obtained under the  criterion will be dis-
cussed.

The 30-year simulation under the  convergence

criterion took about 5000 time steps (with about 
total Newton steps) for both the upstream and the cen-
tral weighting. We found the solutions in form of satu-
ration and streamline patterns as displayed in Figs.
1.29(a), 1.29(a) and 1.31.

Forsyth and Kropinski14 used both central and
upstream weighting at two grid resolutions (52x46 and
103x92). They predict that the capillary barrier fails
with a diversion length of about 10 m characterized by
a saturation distribution as exemplified in Fig. 1.29(b)
for upstream weighting and Fig. 1.29(b) for central
weighting with the 52x46 grid.

The present simulations confirm Forsyth and
Kropinski’s results14. The computed saturation distri-
butions are displayed for three specific contour levels
in Fig. 1.29(a) for the upstream weighting and in Fig.
1.29(a) for the central weighting. Some details are
depart from Forsyth and Kropinski’s simulations. It can
be assumed that most of them is caused by different
boundary conditions. Forsyth and Kropinski imposed a
seepage point on the right-hand side boundary and han-
dled the bottom of the tuff layer as a no-flow boundary,
however, at a far vertical position. In the present model,
such a seepage point is not imposed and the bottom of
the tuff is fully handled as a free-drain boundary at the
actual position as shown in Fig. 1.27. For the central
weighting (Fig. 1.29(a)) we note a jagged saturation
profile which disappears for upstream weighting (Fig.
1.29(a)). A small strip of lower saturation can be seen
along the gravel-tuff interface in both the upstream and
the central solutions. Forsyth and Kropinski found it
only in their central weighting solution (Fig. 1.29(b)).

L2
L∞

R L2

L2 10 3–

10 2–

TMBE T 30 yr=( ) 1.2 10 2–⋅≈
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L∞

time t  [yr]

Figure 1.28 History of residual error  for the RMS
 and maximum  convergence criteria with

 and central weighting.
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Figure 1.29 Simulated saturation patterns at t = 30 yr: a) present solution by TBFN and upstream weighting, b) upstream
weighting solution obtained by Forsyth and Kropinski14.
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Figure 1.30 Simulated saturation patterns at t = 30 yr: a) present solution by TBFN and central weighting, b) central
weighting solution obtained by Forsyth and Kropinski14.
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The streamline patterns in Fig. 1.31 illustrate the
effect of the capillary barrier at the sand-gravel mate-
rial interface. Only slight differences exist between
upstream and central weighting. The streamlines reveal
that the diversion length is obviously somewhat larger
than 10 m. Actually, the velocity distribution along the
bottom of the tuff layer indicate a leakage increase
from zero at about 10 m to the infiltration rate at about
25 m, as depicted in Fig. 1.32. The relatively smooth

breakthrough results from the complex layered struc-
ture of this capillary barrier. The breakthrough curve is
slightly ahead for the upstream weighting. An evalua-
tion of Ross’ analytical formula40 using the above van
Genuchten parameter for the sand and gravel zones
(Table ) gives a diversion length of 17.9 m. This value
is in good agreement with the present numerical simu-
lations as seen in Fig. 1.32.
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Figure 1.31 Simulated streamline patterns at t = 30 yr, TBFN for a) central and b) upstream weighting.
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The primary variable switching technique has
proved to be a powerful and cost-effective solution
strategy for unsaturated flow problems. Compared to
conventional approaches based on the -form and the
mixed -form of the Richards equation, with either
Picard or Newton iteration, the primary variable
switching technique can reduce the solution effort by
orders. More specifically, for very dry initial condi-
tions, the primary variable switching technique appears
as the only practical way to get reasonable solutions.
This has been shown in a number of difficult examples.
The advantages of the primary variable switching tech-

nique can be summarized by the following items. It is

• unconditionally mass-conservative,
• very effective and robust for dry initial conditions,
• a Newton-based iteration method with quadratic

convergence representing a ’natural’ approach for
the approximation of highly nonlinear problems
combined to constrained relationships (primary
and secondary variables), and

• a general analysis method suitable for single- and
multi-phase flow problems. 

The price to be paid for the primary variable switch-
ing technique is in assembling and solving the unsym-
metric equation system at each time and Newton step.
For unsaturated flow the Jacobian can easily be con-
structed in an analytical manner to reduce the computa-
tional effort. For the most cases studied, however, the
increased effort in handling the unsymmetric system is
largely compensated by the fast convergence behavior.
 

Nevertheless, we do not claim to have a panacea for
all variably saturated flow problems. We presented a
wide spectrum of examples to benchmark the tech-
nique and compare our results with previous findings.
We found some differences. First of all, the iterative
solution procedure embedded in the primary variable
switching technique have proved to be of prime impor-
tance. We studied both a temporally error-controlled
predictor-corrector one-step Newton scheme (PCOSN)
and a commonly used12,13,14,24 target-based full Newton
scheme (TBFN). While the PCOSN satisfies a tempo-
ral discretization error at each time (and iteration) step,
the TBFN is controlled by the Newton convergence cri-
terion only and does not necessarily satisfy a discreti-
zation error. As a result, the PCOSN and the TBFN
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Figure 1.32 Leakage/infiltration ratio in the tuff layer.
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schemes can provide different solution behaviors.
Roughly speaking, the PCOSN needs often more steps,
however, gives more accurate solutions. Its numerical
control is much simpler for practical use. Only one
control parameter, the error tolerance , has to be spec-
ified. On the other hand, the TBFN often requires a
smaller (sometimes a significantly reduced) number of
steps to accomplish a simulation time. In analyzing the
discrepancies with the results of Forsyth et al.13 we can
conclude that the TBFN is somewhat seductive. Allow-
ing aggressive step sizes it appears as a fast and rather
comfortable procedure. However, in spite of iteration
convergence, TBFN results can possess large time trun-
cation errors, unless the target change parameters, and
accordingly the step sizes, are kept sufficiently small.
The selection of these parameters is empirical. In con-
trast, the PCOSN results are based on temporal discret-
ization requirements. Considering the examples
analyzed in this work we can draw the following con-
clusions:

(1) The primary variable switching technique is able to
handle any value of (negative) initial pressures. The
scheme remains mass-conservative for an arbitrary
time step size (see section 1.8.1.2).

(2) The primary variable switching technique provides
a much better convergence behavior compared to both
the mixed -form and the standard -form of the
Richards equation. This is independent of the used time
marching scheme (cf. Table 1.3). The efficiency of the
primary variable switching technique grows with
decreasing initial pressure . The acceleration usually
ranges between 2 and 10, sometimes even more. The
primary variable switching technique seems to be the
only practical way to tackle unsaturated flow processes

at very dry initial conditions.

(3) The time marching procedure and iteration control
influence significantly the solution efficiency. The
adaptive PCOSN scheme satisfies a predefined tempo-
ral discretization bound and usually requires more time
and Newton steps at dry initial conditions than the
TBFN scheme. Depending on the problem and the con-
trol parameter enforced, the TBFN can be three to six
times faster than PCOSN (sections 1.8.1.1, 1.8.1.2,
1.8.4.1, and 1.8.4.2).

(4) As soon as a fully saturated zone occurs (perched
water table problems) the PCOSN becomes superior
and more effective (sections 1.8.2 and 1.8.3), unless a
more complex time control is used for the TBFN.

(5) The TBFN procedure does not guarantee a temporal
accuracy. Resulting errors can be significant and some-
times larger than spatial discretization effects (see Figs.
1.16, 1.17 and 1.18; Figs. 1.3, 1.4 and 1.9). TBFN sac-
rifices temporal accuracy in favor of accelerated con-
vergence.

(6) The time marching schemes are formulated for both
a first-order accurate (FE/BE) and a second-order accu-
rate (AB/TR) strategy. For the primary variable switch-
ing technique we find that the fully implicit FE/BE
scheme is more robust and should normally be pre-
ferred. This is in contrast to a standard -form, where
the higher-order AB/TR scheme works very well. In
the primary variable switching technique numerical
disturbances for the AB/TR scheme can be generated
by the acceleration vectors  occurring in both the
Jacobian and the residual (see eqns (1-20), (A1) and
(B1)). To improve the situation and gain further
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insights, additional investigations are required for
higher-order schemes applied to the primary variable
switching technique.

(7) The upstream weighting technique used in this work
is easy to implement for the finite element method. It
can eliminate spurious local maxima and minima in
coarse meshes (Figs. 1.20 and 1.21). Upstreaming is
associated with a phase lead error which can often be
tolerated with respect to the remaining errors.

(8) In simulating capillary barrier problems the situa-
tion is rather mixed. If the initial pressure is moderate
there is no need to prefer variable switching since the
primary interest is in steady-state solutions. Otherwise,
if perched water develops, the convergence behavior is
quite poor for a TBFN iteration strategy and a PCOSN
method becomes more effective. On the other hand, for
very dry conditions with no perched waters the variable
switching technique with the TBFN strategy cannot be
beaten (sections 1.8.5.1 and 1.8.5.2).

(9) The deviatory convergence criteria in form of 
(1-43) and  (1-44) error norms are basically
employed in the one-step Newton (PCOSN) scheme.
The same criteria are utilized for the TBFN in the
present work. In the examples it has been shown that
the overall iteration process can be reasonably con-
trolled and global mass balance errors remain suffi-
ciently small. However, in certain situations (e.g., sharp
parameter contrasts) we find a stronger criterion in
form of the maximum  norm is to be preferred to
limit the global mass balance errors below a certain
level, so as done in the capillary barrier simulations.
Here, the direct (or additional) use of a residual conver-
gence criterion such as eqn (1-53) would improve the

global mass balance control (for sure, one would termi-
nate the Newton iteration only if the residual satisfies
the roundoff error). Such a criterion can be simply
incorporated into the TBFN. But for the predictor-cor-
rector technique, the Newton iteration can no longer be
restricted to only one step and, as a result, two user-
specified tolerances are necessary. This is a subject of
further investigations. 

The above simulations refer to 2D (1D) problems
for which comparable results are available. However,
the schemes discussed in this paper have been devel-
oped for both 2D and 3D applications. The present
computations were performed with the FEFLOW®

simulator9.
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The derivative of the residual (1-20) with respect to
the pressure head  at the new time plane 
and the current iterate  yields the following expres-
sions ( ):
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(A1)

The partial Jacobians in eqn (A1) are obtained as fol-
lows

(A2)

(A3)

(A4)

(A5)

(A6)

with

(A7)

and

(A8)

The derivatives  and  are given functions
which can be evaluated either analytically from the
parametric models (1-3)-(1-6) or numerically from
chord slope approximations (Appendix C) for the
known variables  and  at the iterate , the node 
and the time plane . Here,  is the moisture
capacity function known from the standard unsaturated
modeling.
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The derivative of the residual (1-20) with respect to
the saturation  at the new time plane  and
the current iterate  yields the following expressions
( ):

(B1)

The partial Jacobians in eqn (B1) are obtained as fol-
lows

(B2)

(B3)

(B4)

(B5)

(B6)

with the inverse moisture capacity

(B7)

which can be either derived analytically from eqns (1-
3) and (1-5) or numerically by using chord slope
approximations (Appendix C). Notice, it is necessary
to use the pressure head  instead of the hydraulic
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head  to evaluate the moisture capacity functions
 and . Actually,  can also be

expressed by  since , but the inverse
moisture  capacity  is not simply invertible for 
because .
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In contrast to analytical derivatives in form of the
moisture capacity  (A7) and its inverse 
(B7) chord slope approximations can be useful and
effective. Within the predictor-corrector one-step New-
ton scheme proposed here the derivative terms are
evaluated by using the predicted solutions (1-35), (1-
36) for the current time plane . For instance, a
simple first-order accurate finite difference approxima-
tion of  would lead to

(C1)

Since only one iteration per time step is employed for
the present predictor-corrector one-step Newton tech-
nique the iterates indicated by the subscript  can be
replaced by the predictors denoted by the subscript .
This yields

(C2)

It can be easily seen that this derivative is nothing more
than the quotient of the acceleration vectors (1-35) for
the saturation and the pressure head

 (C3)

which represents a chord slope approximation of the
saturation derivative applied to the first-order accurate
BE scheme.

A corresponding second-order accurate chord slope
approximation suited for the TR scheme can be simi-
larly derived using eqn (1-41) as

(C4)

The chord slope approximations for the inverse mois-
ture capacity  yield equivalent expressions.

Note here that limitations exist for the chord slope
approximations if the denominator of eqns (C3) and
(C4) tends to zero. Practically, below an absolute mini-
mum difference tolerance (typically we use  for
the pressure head and  for the saturation) the eval-
uation of the derivative becomes an analytical (exact)
procedure.
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ABSTRACT
The present paper aims at a discussion of the numerical
requirements and efforts for the finite-element modeling of
transient free surface(s) flow and transport problems in two
and three dimensions. Following aspects are emphasized:
(1) Classic groundwater against unsaturated-saturated mod-
eling approaches. (2) Moving mesh approaches versus fixed
grid strategies for multi-layered aquifers with their advan-
tages and drawbacks. (3) Generalized boundary and con-
straint conditions for flow and transport modeling needed
for a free-surface analysis. (4) Introducing the BASD (Best-
Adaptation-to-Stratigraphic-Data) technique as a new
numerical strategy to automatically adapt the location of
water table(s) to all relevant data of a hydro-stratigraphic
initial structure with parameter discontinuities. (5) Theoreti-
cal basis of a pseudo-unsaturated modeling approach and its
limitation.
The impact of the numerical approaches is studied for
selected applications: (i) benchmarking moisture dynamics
in homogeneous and layered soils, (ii) drainage experiment,
(iii) dam seepage modeling, (iv) benchmarking the mine
flooding for a generic 3D pit geometry, and (v) real-site
modeling of complex flow and contaminant transport prob-
lems.

Key words: groundwater, free-surface problems, unsatur-
ated-saturated porous media, finite-element method, mesh
adaptation, moisture movement, dam seepage, mine flood-
ing
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Latin symbols

curve-fitting parameter;
curve-fitting parameter;

 concentration and reference
concentration of a miscible chemical
species, respectively;
moisture capacity storage;
specific heat capacity of fluid and
solid, respectively;
tensor of mechanical dispersion;
molecular diffusion in the porous
medium;

1 gravitational unit vector;
quantity;
gravitational acceleration;
hydraulic (piezometric) head;

1 unit tensor;
tensor of hydraulic conductivity for
the saturated medium (anisotropy);
tensor of permeability for the
saturated medium (anisotropy);

A
B
C Co, ML 3–

C ψ( ) L 1–

cf cs, L2T 2– Θ 1–

D L2T 1–

Dd L2T 1–

e
G
g LT 2–

h L
I
K LT 1–

k L2
O
qêÉ~íãÉåí=çÑ=ÑêÉÉ=ëìêÑ~ÅÉë=áå=Oa=~åÇ=Pa=ÖêçìåÇJ
ï~íÉê=ãçÇÉäáåÖ
cbcilt=ö=ST



OK=qêÉ~íãÉåí=çÑ=ÑêÉÉ=ëìêÑ~ÅÉë=áå=Oa=~åÇ=Pa=ÖêçìåÇï~íÉê=ãçÇÉäáåÖ
1 relative hydraulic conductivity
( ,  if saturated at

);
1  curve-fitting parameter

(Mualem assumption);
number of intersections;
finite element shape function at node
i;

1 normal unit vector (positive
outward);

1 , pore size distribution index,
approximately in the range

;
fluid pressure;
fluid flow sink/source;
bulk mass sink/source;
bulk thermal sink/source;
fluid and solid thermal sink/source,
respectively;
Darcy flux vector;
normal flux on a boundary (positive
outward);

1 retardation and derivative
retardation, respectively;
infiltration or evaporation rate on a
free surface;
areal property;
storage coefficient;

1 saturation of the fluid phase
( ,  if medium is
saturated);

1 effective saturation of fluid;
1 residual saturation of fluid;
1 maximum saturation of fluid;

temperature and reference
temperature, respectively;

Eulerian spatial coordinate vector;
elevation above a reference datum;
elevation vector for slice s and at
time level n;

Greek symbols

solutal expansion coefficient;
curve-fitting parameter;
thermal expansion coefficient;
curve-fitting parameter;
longitudinal and transverse
dispersivity, respectively;
boundary;
fluid compressibility;
time increment at level n;
Kronecker operator;

1 porosity ( );
1 effective porosity at the free surface;
1 , volumetric moisture content

( ,  if medium is
saturated);

1 residual volumetric moisture
content;

1 saturated volumetric moisture
content;
chemical decay rate;

1 curve-fitting parameter;
tensor of thermal hydrodynamic
dispersion of fluid phase;
thermal conductivity for fluid and
solid, respectively;

 dynamic viscosity and reference
dynamic viscosity of fluid,
respectively;

Kr
0 Kr 1≤< Kr 1=

sf 1=
m 1 1 n⁄–

N
Ni

n

n n 1>

1.25 n 6< <
pf ML 1– T 2–

Qh T 1–

QC ML 3– T 1–

QT ML 1– T 3–

QT
f QT

s, ML 1– T 3–

q LT 1–

qn

R Rd,

Ro LT 1–

S
So L 1–

sf

0 sf< 1≤ sf 1=

se
f

sr
f

ss
f

T To, Θ

x L
z L
zs

n L

α L3M 1–

α
β Θ 1–

β
βL βT, L

Γ
γ L 1–

∆tn T
δij
ε 0 ε< 1≤
εe
θf sfε

0 θf< ε≤ θf ε=

θr
f

θs
f

ϑ T 1–

κ
Λf MLT 3– Θ 1–

λf λs, MLT 3– Θ 1–

µf µo
f, ML 1– T 2–
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fluid density and reference fluid
density, respectively;
solid density;
final time;
skeleton compressibility;
adsorption function to describe
Henry, Freundlich and Langmuir
isotherms;
pressure head (  saturated
medium,  unsaturated
medium);
domain;

Subscripts

air entry;
property index
nodal indices;
intersected layer;
direction of gravity in the Cartesian
coordinate system;
reference value;
slice index;
time-dependence;

Superscripts

number of space dimensions;
element;
fluid (water) phase;
time level;
solid phase;
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Subsurface flow and transport phenomena involv-
ing free surface(s) represent a general and important
class of nonlinear problems. In the past, various
approaches and computational methods have been
established for solving groundwater free-surface prob-
lems in two and three dimensions with more or less
success. Most of them are constrained with respect to
the range of application and the practical motivation,
for instance, local-scale dam seepage problems,
regional groundwater flow modeling or moisture
movement in the vadose zone for soil columns have led
to quite different solution strategies1-19. Generally, in
modeling free-surface problems two conceptual models
can be chosen: (1) the unsaturated-saturated modeling
approach and (2) the fully saturated, water-table, clas-
sic groundwater modeling approach (cf. Fig. 2.1). Each
of them has their advantages and drawbacks. While the
unsaturated-saturated approach involves the inclusion
of the entire flow domain in the analysis, the fully satu-
rated approach considers only the domain below the
free surface where the water table is treated as a mov-
ing material interface.

From the physical point of view the unsaturated-sat-
urated modeling approach provides the most rigorous
treatment of computing free-surface problems. How-
ever, its solution enlarges the computational effort and
has to tackle the strong nonlinearities in the governing
equations for flow and transport. In the numerical solu-
tion process convergence problems can occur, espe-
cially under dry conditions. Furthermore, in many
engineering applications the data of unsaturated char-
acteristics are often not available. For a specific site the
initial saturation states, capillary pressure and relative

ρf ρo
f, ML 3–

ρs ML 3–

ϒ T
φ L 1–

χ

ψ L ψ 0>
ψ 0≤

Ω

a
i
i j k, ,
l
l
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conductivity relationships are data which are often dif-
ficult to obtain.

On the other hand, common groundwater water-
table models suffer from a number of limitations. The
conception of free surfaces in groundwater can fail for
complex applications, e.g., if there is no coherent water
table and free surfaces become highly dynamic and iso-
lated (trapped or perched water) which often happens if
the water table has a deep location or water utilization
(and drainage) in an aquifer system lead to partly dew-
atered regions while the layers above remains satu-
rated. Such processes combined with tasks of saltwater
intrusion or geothermal supply are very difficult to
solve without an unified unsaturated-saturated flow
approach. Otherwise, mesh adaptation due to free-sur-
face movement is difficult to control numerically, espe-
cially for complex aquifer systems with high parameter
contrasts and sharp zones of water depression. On the
other hand, the use of fixed (unmoved) meshes in a
conventional groundwater analysis can arise problems
if (a) parts of the aquifer fall ’dry’ because the handling

of such dry mesh cells is often heuristic and physically
’incorrect’ and (b) mass transport is to be modeled
because contaminants can be ’frozen’ in ’dry’ cells
instead of moving according to the water table.

The majority of today’s groundwater models for
free surfaces (unconfined, phreatic aquifers) deals with
the fully saturated zones only. Accordingly, it should
seem to be a standard and well-solved task. However,
the practical modeler can still report on a number of
lacks and troubles under real applications. The major
difficulties refer to the following: (1) The free-surface
problem is mostly solved only in a non-rigorous man-
ner, i.e., the kinematic boundary conditions are adapted
by ad-hoc approaches (e.g. by introducing an auxiliary
‘well-term’) such as done in the widely used package
MODFLOW20. Criticisms were recently summarized
by Yeh et al.16 and Knupp17. While Yeh16 modeled
homogeneous 3D domains for which a moving tech-
nique is much simpler, Knupp17 developed an
improved moving grid technique for a finite volume
code which allows the computation of regional situa-
tions at complex stratigraphy and heterogeneous condi-
tions. However, its proposed algorithm permits motion
of only the upper portion of the grid. (2) Special han-
dling is needed if parts of the domain intermediately
become dry. There are different ‘tricks’ to overcome
such situations (e.g., frozen cells, converting proce-
dures, intermediate deletion of elements). Here is a
great influence of ‘dubious’ manipulations in ‘free’
computer codes. Accordingly, more general techniques
are required to attain robust, balance-accurate and non-
oscillatory solutions. (3) Multiple (more than one) free
surfaces in an aquifer system are often difficult to
tackle. The storage coefficients in the layered system
become strongly dependent on the dynamically wetted

Figure 2.1 a) Unsaturated-saturated modeling approach
using a fixed (invariant) mesh, b) fully saturated classic
water-table modeling approach with a moving (variable)
mesh.

a) b)

unsaturated zone

saturated zone

free surface

included - excluded
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element conditions. (4) The existence of free-surface
conditions in the context of contaminant mass or heat
transport processes, including density effects, forces to
a generalization of the solution strategy.

The present paper aims at an unified handling of
free-surface problems both in an unsaturated-saturated
approach and in the fully saturated modeling approach
embodied in one code to get more flexibility and
robustness in the numerical solution. The basic formu-
lation is based on the balance equations for flow, con-
taminant mass and heat transport in unsaturated-
saturated media with density and viscosity coupling
effects. Related boundary conditions and boundary
constraints are discussed for free surfaces, seepage
faces, ponding and drainage boundaries. The free sur-
face and seepage conditions represent kinematic for-
mulations which lead to a rigorous approach to solve
the flow and transport equations in the fully saturated
groundwater domain. For these purposes a more gen-
eral moving mesh strategy, called BASD, will be intro-
duced which is capable of computing movable finite
element meshes in three dimension even under general
stratigraphic heterogeneous material conditions. The
moving mesh technique is compared with the conven-
tional fixed grid technique for saturated flow and the
more general unsaturated-saturated modeling
approach.

The motivation for the developments is in complex
3D and 2D flow and transport problems in mining and
water management problems. The impact of the used
strategies will be shown along the moisture movement
in unsaturated homogeneous and layered soils, drain-
age and seepage problems, a generic problem of pit
flooding and in modeling of real-site mining problems.

All developments and computations refer to the inter-
active groundwater simulation system FEFLOW21.

OKO dçîÉêåáåÖ=bèì~íáçåë

The governing equations for the unsaturated-satu-
rated flow, contaminant mass and heat transport are
derived from the macroscopic phase-related conserva-
tion principles for mass, linear momentum and
energy22. Let  and  be the spatial and
temporal domains respectively, where d is the number
of space dimensions (2 or 3), and let  denote the
boundary of . The subscript t implies the time
dependence of the spatial domain (if the domain
becomes time-invariant:  and ). The
spatial and temporal coordinates are denoted by 
and . The following nonlinear system finally
results which has to be solved in two and three dimen-
sions:

(2-1)

(2-2)

(2-3)

Ωt ℜd⊂ 0 ϒ,( )

Γt
Ωt

Ωt Ω→ Γt Γ→
x Ωt∈

t 0 ϒ,( )∈

So sf⋅ ψ( ) ε C ψ( )⋅+[ ]∂h
∂t
------ ∇ q⋅+ Qh=

q Kr sf( )Kfµ ∇h
ρf ρo

f–

ρo
f

----------------e+
 
 
 

–=

sf ψ( )Rd C( )∂C
∂t
------- q ∇C ∇ εsf ψ( )DdI D+( ) ∇C⋅[ ]  +⋅–⋅+

 sf ψ( )R C( )ϑ Qh+[ ]C+ sf ψ( )QC=
cbcilt=ö=TN
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(2-4)

with the definitions and constitutive relationships

(2-5a)

(2-5b)

(2-5c)

(2-5d)

(2-5e)

(2-5f)

(2-5g)

(2-5h)

(2-5i)

(2-5j)

To solve the nonlinear equations (2-1) to (2-4) for
, , , and  under unsaturated-saturated conditions

constitutive relationships for the saturation-dependent
moisture capacity  and hydraulic conductivity

 have to be specified in form of empirical rela-
tionships for the capillary pressure head-saturation

, with its inverse , and for the relative con-
ductivities . The following parametric models
will be preferred23:

(1) van Genuchten-Mualem model:

(2-6)

(2-7)

with the effective saturation of fluid

(2-8)

(2) Brooks-Corey model:

(2-9)
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(2-10)

(3) Haverkamp model:

(2-11)

(2-12)

The above strongly nonlinear parametric curves
describes the fluid saturation  and the relative
hydraulic conductivity  as a function of the
pressure head  in an unique manner. They are contin-
uous over the entire range of  which is an useful fea-
ture for the numerical implementation. Under saturated
conditions  the nonlinearities in the parametric
relationships vanish, however, for free-surface condi-
tions a nonlinear boundary-value problem remains to
be solved.

OKP fåáíá~äI=_çìåÇ~êó=~åÇ=`çåJ
ëíê~áåí=`çåÇáíáçåë

OKPKN fåáíá~ä=ÅçåÇáíáçåë

The initial condition on the hydraulic head , con-
centration  and temperature  are specified on :

(2-13)

It is obvious due to the above parametric relationships
the initial hydraulic head distributions represents at the
same time an alternate initial distribution for the pres-
sure head , fluid saturation  and the moisture con-
tent :

(2-14)

OKPKO pí~åÇ~êÇ=ÄçìåÇ~êó=ÅçåÇáíáçåë

Denoting  and  two disjoint portions of the
total boundary , the following formula-
tions for boundary conditions (BC’s) are specified for
the Eqn. (2-1) to (2-4),

(2-15)

with the normal fluxes
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(2-16a)

(2-16b)

where on  Dirichlet BC occurs and on  a more
general form of a Robin type BC is imposed. If  a
Neumann flux-type BC of 2nd kind results, while for

 a common Cauchy BC of 3rd kind is given. In (2-
16a)  corresponds to the normal unit vector (positive
outward),  and  are prescribed boundary values
for , , or  on  and , respectively. In the
present context some specifications of the boundary
conditions are becoming important which are described
next.

OKPKP Ûaê~áå~ÖÉÛ= Öê~ÇáÉåíJíóéÉ
ÄçìåÇ~êó=ÅçåÇáíáçåë

Applied to unsaturated problems a Neumann
( ) flux-type boundary condition in the form

(2-17)

can be sometimes inappropriate, for instance if model-

ing a drainage boundary in the vadose zone with a bot-
tom outflow boundary condition for situations where
the water table is situated far below the domain of
interest. Here, a gradient-type boundary condition is
often to be preferred24:

(2-18)

On such a boundary it can be assumed the pressure gra-
dient diminishes  and since , Eq.
(2-18) is practically applied in the following form:

(2-19)

Once  the boundary freely drains the flow
domain due to the influence of gravity.

OKPKQ cêÉÉ= ëìêÑ~ÅÉ= ÄçìåÇ~êó= ÅçåÇáJ
íáçåë

The incorporation of free surface conditions is per-
formed via proper kinematic boundary conditions.
Starting point represents the conservation relationship
at a macroscopic surface of discontinuity22, the interfa-
cial free surface. It leads finally to the formulation:

(2-20)
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where  corresponds to the component of the unit out-
ward normal vector  directed along the gravity direc-
tion (z-coordinate). As seen from Eq. (2-20) along a
free surface two boundary conditions are to be satisfied
simultaneously:

• a prescribed flux rate (as an infiltration or, if equal
to zero, then impervious) and

• the location corresponds to the hydraulic head
(constant pressure level)

which leads to a nonlinear boundary-value problem
because the location of a free surface is initially
unknown.

OKPKR pÉÉé~ÖÉ= Ñ~ÅÉ= ÄçìåÇ~êó= ÅçåÇáJ
íáçåë

A seepage face represents a specific free surface
condition for which the geometry as a part of the
boundary of the flow domain  is known, except for
the location of its end points23. It reduces to a Dirichlet-
type condition of a prescribed hydraulic head condition
in the form

(2-21)

Since the range of the seepage face is initially unknown
its solution also leads to a nonlinear task. Practically, it
can be solved by applying additional constraint condi-
tions on the boundary which will be described further
below. Commonly, a seepage face condition is imposed
on such portions where the balanced flux going
through the boundary is directed outward (it means the
seepage face exists only there where the boundary

drains the flow domain).

The seepage face condition  can also be con-
sidered as a reference head condition outside the flow
domain. As an alternate to (2-21) it can act as a
Cauchy-type condition in the form

(2-22)

where the transfer coefficient  mimics a ’resistance’
to control the outflow through the seepage face (e.g., at
a dam covering).

OKPKS pìêÑ~ÅÉ=éçåÇáåÖ=ÄçìåÇ~êó=ÅçåJ
Çáíáçå

Surface ponding denotes a ’surface reservoir’
boundary condition of the type

(2-23)

which is similar to free-surface condition as situated in
an ’air layer’ for what the effective porosity becomes
unity ( ). This condition permits water to build
up on the surface. The height of the surface water layer
increases or reduces according to the rate .

Alternatively, if the surface reservoir is deemed
infinity the boundary of the surface can be imposed by
a prescribed water table condition  as long as the
infiltration is associated with a water table above a
given elevation. This can be easily solved in combina-
tion with boundary constraints where a Neumann-type
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BC is constrained by min-max hydraulic head bounds
in form of Dirichlet-type conditions.

OKPKT `çåëíê~áåíë=çÑ=ÄçìåÇ~êó=ÅçåÇáJ
íáçåë

Constraints are limitations for all types of boundary
conditions. They result from the requirement that
boundary conditions should only be valid as long as
minimum and maximum bounds are satisfied. If during
a simulation run the conditions are exceeded or fall
below, the constraints are to be assigned as new inter-
mediate boundary conditions. As already indicated
above, seepage face conditions belong to this type: A
Dirichlet-type BC  is imposed along a boundary
on which a seepage face can potentially occur. Addi-
tionally, this condition is committed to the constraint
that the flux has to release (drain) the flow domain. In
such a procedure the flux through the boundary has to
be continuously checked (e.g., is Q becoming positive
or negative) to decide on the acceptance of the original
boundary condition or on its intermediate replacement
by appropriate flux-type boundary conditions.

The formulation of constraints is based on the for-
malism of complementary conditions for a type of
boundary condition. Accordingly, a potential condition
(hydraulic head, concentration or temperature) is con-
strained by maximum and minimum flux relations
(fluid, mass or heat fluxes). On the other hand, flux
relationships are constrained by complementary poten-
tial limits, i.e., the fluid flux is constrained by min-max
heads, the contaminant mass flux by min-max concen-
trations, and the heat flux by min-max temperatures
(for more details see Diersch22).

For instance, the minimum and maximum con-
straints of a Dirichlet-type concentration will lead to
additional conditions in the following form (it reads:
the imposed boundary condition  is accepted
only if the related mass balance flux  (and the
related hydraulic head ) is within given min-max
bounds, if not, these bounds have to be used as new
boundary conditions, where the boundary type has to
be changed from a Dirichlet-type into a flux-type
boundary condition of a point sink/source )

(2-24)

where  is the mass balance flux at the boundary
point to be computed while the  condition is
imposed,  and  denote the prescribed time-
dependent maximum and minimum bounds, respec-
tively, and  represents a singular mass sink/source
to be set at the boundary point (node) instead of the
original Dirichlet-type boundary condition. Similar
expressions exist for the other types of boundary condi-
tions. This procedure allows the control of concentra-
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tion at the boundary in dependence on both the
balanced flow conditions through the boundary (e.g.,

) and the location of possible free-surface
conditions within the bounds . The latter is
very important for complex mine flooding processes as
studied by Diersch et al.25.

OKQ cáåáíÉ= bäÉãÉåí= cçêãìä~J
íáçåë

The finite element method (FEM) is used to solve
the governing balance equations (2-1) to (2-4) with
their constitutive relationships (2-5a) to (2-12) and the
accompanying initial conditions (2-14), (2-15) and
boundary conditions (2-15) to (2-24) for both the
unsaturated-saturated approach and the fully saturated
approach. In the general case the spatial finite-element
discretization yields the following highly nonlinear
matrix system:

(2-25)

where h, q, C, and T represent the resulting vectors of
nodal hydraulic head, Darcy fluxes, contaminant con-
centration and temperature, respectively. Notice, the
hydraulic head h is strictly correlated with the pressure
head  and the fluid saturation  via the above defini-
tion and the constitutive equations. The superposed dot
means differentiation with respect to time t. The matri-

ces S, A, O, P, and U are symmetric and sparse, while
D and L are unsymmetric, however sparse too. The
remaining vectors F, B, R and W encompass the right-
hand sides of equations. The main nonlinear functional
dependence is shown in parenthesis.

In solving the equation system  for unsaturated-sat-
urated conditions the domain and the boundary can be
considered invariant, i. e., the used mesh becomes
fixed and independent of time: , . This
represents a great advantage, but it is paid by an
enlarged solution domain and the strongly nonlinear
dependences which increases the computational effort,
partly dramatically.
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The nonlinear equation system  is temporarily dis-
cretized by predictor-corrector two-step marching
schemes26 of a first and second order accuracy in time.
For the present nonlinear problems the Newton method
is preferred for the unsymmetric transport equations,
while Newton method can be omitted in the flow equa-
tions to maintain the symmetric property of the matri-
ces.

Figure 2.2 indicates how the solution process is
cycled for each equation inside the time loop if con-
straint conditions occur. The proposed adaptive strat-
egy allows an accurate and non-oscillatory solution
even for ill-posed problem formulations.

For solving the resulting large sparse matrix sys-
tems appropriate iterative solvers for symmetric and
unsymmetric equations are applied. For the symmetric
positive definite flow equations the conjugate gradient
(CG) method is successful provided a useful precondi-
tioning is applied. Standard preconditioner such as the
incomplete factorization (IF) technique and alterna-
tively a modified incomplete factorization (MIF) tech-
nique based on the Gustafsson algorithm are used.
Different alternatives are available for the CG-like
solution of the unsymmetric transport equations: a
restarted ORTHOMIN (orthogonalization-minimiza-
tion) method, a restarted GMRES (generalized minimal
residual) technique and Lanczos-type methods, such as
CGS (conjugate gradient square), BiCGSTAB (bi-con-
jugate gradient stable) and BiCGSTABP (postcondi-
tioned bi-conjugate gradient stable). For
preconditioning an incomplete Crout decomposition
scheme is applied. Commonly, BiCGSTABP is the first
choice in the practical simulation of large problems.

Under saturated conditions the most of the h-depen-
dencies in the matrix expressions vanish and the matrix
system gets a much simpler form:

(2-26)

Rosetten all intermediate constraint conditions

Solving flow equations

Solving contaminant transport equations

Solving heat transport equations

Adapting 3D finite element mesh

Does flow violate constraints?

Time step control for flow errors

Does contaminant transport violate constraints?

Time step control for contaminant transport errors

Time step control for heat transport errors

Does heat transport violate constraints?

T
im

e 
lo

op

Restart

Constraint loop

Figure 2.2 Adaptive strategy for transient free-surface
flow, mass and heat transport.
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(2-27)

where the remaining nonlinearities result from possible
density and viscosity coupling effects. However, the
free surface condition introduces a h-dependence in the
solution domain  and the boundary

. Accordingly, the mesh has to be adapted to
the changed geometric relations during the simulation.
This requires a moving mesh strategy which will be
discussed further below.

In the preferred finite element method the free-sur-
face boundary condition (2-20) is directly incorporated
into the flow equations of (2-26) as written for the dis-
cretized 2nd order trapezoid rule

(2-28)

where  represents the time level. For saturated free-
surface conditions the storage matrix  consists of two
parts: a volume integral for the material compressibil-
ity and a surface integral for the storage of the material
interfacial (fillable/drainable) property at the free sur-
face.

In contrast to (2-28) the computation of the storage
under unsaturated-saturated conditions is quite differ-

ent. Here the -matrix holds the form:

(2-29)

It reveals two volume integrals, where the second inte-
gral on the right-hand side involves the moisture capac-
ity storage term which is highly nonlinear and
dependent on the chosen capillary pressure head rela-
tionship as defined by the expressions (2-6), (2-9) or
(2-11). Notice, for unsaturated conditions it has been
shown27,28 the consistent matrix  is to be transformed
into a lumped matrix

(2-30)

where here a row-sum (diagonal) scaling is preferred. It
guarantees mass-conservative and nonoscillatory solu-
tions.

OKR _^pa= E_ÉëíJ^Ç~éí~íáçåJ
íçJpíê~íáÖê~éÜáÅ=a~í~F

For moving meshes in a fully saturated modeling
approach an accurate and powerful technique is
required to align and join the spatially-varying parame-
ter fields according to the changeable free surface loca-
tions. Taking into consideration the parameters (e.g.,
conductivity) often have high contrasts it should be
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clear a formal interpolation of the parameters onto the
new mesh coordinates would lead to very poor solu-
tions. The idea of BASD is quite simple: adapting the
moving mesh as best as possible to the stratigraphic
initial mesh to minimize parameter interpolation. Slices
of the mesh are aligned in such a manner that the
adjusted mesh is exactly fitted to parameter discontinu-

ities if ever exist. Remaining slices can be shifted and
repositioned to get a well-spaced nodal distribution in
the depth without unnecessary mesh refinement and
coarsening if attainable. The principle of the mesh
adaptation process can be seen in Fig. 2.3.

The initial stratigraphy consists of three layers with dif-
ferent conductivities. At the initial time  the water
table is on a lower position. The mesh is accordingly
shrunk where the lower two layers completely fit into
the  stratigraphy. However, the upper layer crosses
between the  and  stratigraphy and a special
treatment is here required. Such cross elements should
be admitted only if unavoidable. A proper 3D interpo-
lation technique has been developed which allows a
data joining for elements intersecting an arbitrary num-
ber of stratigraphic layers as described below. If the
water table ascends (Fig. 2.3 at time ) the moving
mesh totally fits the -  stratum while the remain-
ing slice is used to subdivide the widest nodal spacing,

here in the  layer. At later time  a further rise of
the free surface occurs and the moving mesh slices
appear to be well aligned to the data stratification with-
out any need of interpolation.

The working steps of the BASD technique can be
summarized as follows:

(A) Compute the hydraulic head  at the new time
level according to Eq. (2-28).
(B) Determine a new free surface location for the upper
slice  of the moving mesh

(2-31)

Figure 2.3 Moving mesh BASD technique of parameter adaptation applied to 3D free-surface
problems: schematized example for a groundwater rise.
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satisfying the constant head condition of Eq. (2-20),
where  corresponds to z-coordinates of the top
slice.
(C)Adjust and distribute the inner slices, indexed by ,
according to

(2-32)

where  is the firstly found rigid (nonmovable and
time-independent) slice counting from top (at least the
lowest slice describing the aquifer base is rigid) and

 the relation lengths. Special nesting rules have
been developed as for the subdivision of overdue slices
within layers enclosed by two rigid slices:

(2-33)

where  and  are the z-coordinates of the
upper and lower rigid slice, respectively,  is the
number of primary subdivisions and  the number of
overdue (hanging) slices caused by slice shifting.
(D)Assign the parameter arrays according to the new
layer positions. Two cases exist: (a) achievement of full
alignment (no interpolation) and (b) data interpolation
and joining for cross volume elements.
(E)Find out cross elements and join their properties.
The joining process differs between volume-specified
materials (such as conductivity, compressibility) and
area-specified data (such as effective porosity). For
volume-specified material data Gauss-Legendre

numerical integration is used to determine the partial
volumes  of a finite element intersecting the strati-
graphic contours. The material property  of the cross
element is computed by a partial volume-weighted
average as

(2-34)

instead of using a harmonic average, where  runs over
the number of intersections  and  is the property of
the intersected layer.

Similarly, a partial area-weighted averaging process
is preferred for areal properties. However, it has been
found a numerical integration is here insufficient. Ana-
lytical formulas have been developed to determine
exactly the intersected areas of an element. It leads to a
‘telescope’ sum in the form

(2-35)

with the weights

(2-36)

written for prismatic pentahedral elements, where 
and  are the averaged and partial areal properties,
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respectively,  and  correspond to the hydraulic
head and the stratigraphic z-coordinates at node ,
respectively, and the index  represents the lth inter-
sected layer for which the partial area is not a triangle,
generally a pentagon. Equivalent averages can be
derived for hexahedral elements.

The use of the BASD technique for a complex
multi-aquifer system can be seen in Fig. 2.4. It indi-
cates how the mesh fits and moves through the com-
plex stratigraphy consisting of a number of aquifers
and aquitards.

OKS mëÉìÇçJråë~íìê~íÉÇ=jçÇJ
ÉäáåÖ=^ééêç~ÅÜ

Indeed, moving mesh strategies for adapting the
free-surface location complicates the computational

hn zn
n

l

Figure 2.4 Moving mesh BASD strategy in a complex 3D stratigraphy (122,775 nodes and 226,394
elements): 3D model cut view (distribution of conductivities) and moving mesh along a cross section
(initial stratigraphy versus adapted slicing).
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perfect slice fit

adjusted free surface location

slice alignment
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process. Furthermore, if the free surface is not on the
top position of the schematized aquifer system or if
there are more than one free surface in the aquifer sys-
tem (e. g., an additional free surface in a lower posi-
tion) the problem cannot be solved alone on the basis
of moving meshes. In these cases fixed mesh tech-
niques become inevitable. It is a common practice in
classic 3D groundwater modeling for flow in uncon-
fined aquifers to use exclusively fixed grids (e.g.20,29).
Fixed grid techniques have to mimic, more or less,
unsaturated flow conditions to control the solution pro-
cess for saturated, partly saturated or completely dry
grid cells. Since a physically true unsaturated flow
approach is avoided, such kind of unsaturated flow
modeling represents only a physical approximation and
quite different forms of implementation can be found in
the literature (see discussion in Knupp17). Often, there
is actually no rigorous physical basis in modifying the
saturated flow conditions to achieve pseudo-unsatur-
ated flows. Practically, the scaling of conductivity is
used as a contrivance to obtain the solution in the satu-
rated domain. For instance, the conductivity is assigned
to a very small constant value as soon the pressure head
becomes negative: K/1000 for  and K if 30.
Apparently, this is a crude controlling procedure since
it does not differ between the degrees of saturation of
the elements. Desai and Li11 have improved the tech-
nique for finite elements by introducing linear relation-
ships of conductivity and storativity as function of the
pressure head . The linear functions operate as multi-
pliers to the conductivity and storage terms ranging
between maximum (saturated) and minimum (residual)
factors.

The here proposed method is similar to Desai and
Li11, however, instead of prescribing an auxiliary linear

pressure relationship the water (pseudo-)saturation
computed for a finite element is used to ’down-scale’
all balance terms in a natural way. The pseudo-satura-
tion  is determined from the actual filling height of
water in an element:

(2-37)

Accordingly, the pseudo-saturation becomes related to
the actual geometric condition of the used spatial dis-
cretization. It provides a geometry-consistent scaling of
balance terms and has proven superior to a simple
parameter-switching as stated above. An element e is
considered saturated if  at all nodes of the ele-
ment. Then it becomes  and . An ele-
ment e is considered partially saturated (pseudo-
unsaturated) if  changes its sign at the element nodes
(e.g.,  for the upper nodes and  for the lower
(at least one) node(s). Then it is approximately

. An element e is considered fully
unsaturated (or dry) if  at all related element
nodes. Since  have to be positive the volume must
be constrained by a minimum. Practically, a minimum
filling height (e. g., 1 mm) is employed to limit .
This leads to a measure of a residual pseudo-saturation
in such an element.

Using the expression (2-37) in the finite element
equations (2-26) it leads to a natural approach for eval-
uating the corresponding integral terms in a weak solu-
tion. For instance, the part of the conductivity term of
the flow equation takes the form:
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(2-38)

introducing a relative conductivity  as a lin-
ear function of . Similarly, the storage term results as

(2-39)

As seen the volume compressibility becomes a lin-
ear function of the pressure head  too. On the other
hand, the surface integral which describes the kine-
matic free-surface boundary condition (2-20) is related
to the geometric shape  formed by the filling
heights in the corresponding element (notice, while 
is the free surface facet which is built by an element
(top) surface for moving meshes, accordingly  is a
part of the adapted boundary geometry itself; at fixed
meshes  lies in the interior of an element, accord-
ingly the integral has to be evaluated for a surface
which is spanned by the  heights).

It should be emphasized a pseudo-unsaturated mod-
eling approach is suited to compute the location of a
free surface, but, it is widely inappropriate to model a
true unsaturated flow regime. The advantage is in its
simplicity and robustness, but it is generally inferior to
a moving mesh strategy with respect to the attainable
accuracy.

OKT ^ééäáÅ~íáçåë

OKTKN jçáëíìêÉ=Çóå~ãáÅë= áå=ÜçãçÖÉJ
åÉçìë=~åÇ=ä~óÉêÉÇ=ëçáäë

First, let us study true unsaturated flows in both
homogeneous and layered soils to show the capabilities
and the requirements in simulating processes with vari-
able saturation.

The first example refers to Celia et al.’s water infil-
tration problem27 to benchmark the present solution of
the unsaturated-saturated modeling approach for a
strong infiltration front development. Celia et al. pre-
ferred a mixed -form of the governing Richards
equation to achieve accurate solution and sufficient
mass conservation. Unlike, the present model is h-
based and embedded in a second order predictor-cor-
rector scheme for tackling the nonlinear solution pro-
cess by an error-controlled timestep adaptation.

A detailed problem description of the Celia et al.
problem is given elsewhere27,31 and only the major
characteristics are summarized: homogeneous soil col-
umn with a length of 1 m, van Genuchten-Mualem
parametric model (2-6), (2-7) in using n = 2, (m = 0.5),
A = 3.35 1/m,  = 0.368,  = 0.277, and  = 1.0, sat-
urated hydraulic conductivity of 0.922. m/s,
boundary condition of constant head  = -0.75 m at
the top and  = -10.0 m at the bottom, and initial pres-
sure head  of -10.0 m. The same spatial discretiza-
tion characteristics are applied as given in Celia et al.,
who used  = 0.5 cm (dense grid) and  = 2.5 cm
(coarse grid). Otherwise, Celia et al. used a constant
time step length of  = 60 s for the dense-grid simula-
tion.
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A comparison with Celia et al.’s results gives very
good agreements. Figure 2.5 shows the computed pres-
sure profiles at time of 1 day for the case of the dense
grid (notice, Celia et al.’s results are picked from a
table presented in31, where however only selected sam-
ple points are listed).

Celia et al. used both finite difference and finite ele-
ment techniques. For the -based Richards equation
(which should be equivalent to a h-based form) they
found nonoscillatory results only for finite differences,
while finite elements echoed wiggles at the moisture
front once coarse meshes were applied. They could
improve the results if resorting to a modified Picard
iteration technique based on a mixed -form of the

governing Richards equation.

These difficulties as reported in27 are completely
prevented in the present predictor-corrector technique
even for coarse meshes. Figure 2.6 displays the pres-
sure profiles for different spatial discretizations. It
reveals three things: Firstly, the proposed numerical
technique gives wiggle-free solutions. The loss of
accuracy against the dense grid solution is similar to
that as observed by Celia et al. (for more details see27).
Secondly, the accuracy of the solution is significantly
influenced by the spatial (and temporal) discretization.
That means, the simulation of unsaturated flow pro-
cesses requires sufficiently refined meshes. Thirdly, a
50 % moisture profile centre point would not necessar-
ily serve as an accurate identification of a possible free

Figure 2.5 Pressure profiles at t = 1 day for the dense
grid: Celia et al.’s -based solution27,31 using a
mixed-form Picard iteration versus the present predictor-
corrector h-based solution using an adaptive time step-
ping.

θ ψ–

0.0 0.2 0.4 0.6 0.8 1.0
Depth [m]

-100

-80

-60

-40

-20

0

Pr
es

su
re

 [k
Pa

]

Celia et al.
Present

ψ

θ ψ–

Figure 2.6 Pressure profiles at t = 1 day for different
grid spacing  computed by the present predictor-
corrector technique with a h-based form of the Rich-
ards equation.
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surface location. As evidenced in Fig. 2.6, in depen-
dence on the mesh refinement a leading or lagging
phase error in the moisture profiles can occur, but,
unfortunately, the effect of phase lag or lead does not

appear as a simple function of grid spacing (compare
also27). 

The second example concerns the simulation of the

moisture movement in a layered soil as studied by van
Genuchten15. A soil column with a length of 170 cm
includes 4 layers: clay loam (0-25 cm), loamy sand
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Figure 2.7 Simulated moisture-content profiles during infiltration: present solutions (left) and van Genuchten’s
results15, 31 (right), time in days.
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(25-75 cm), dense material (75-87 cm), and sand (87-
170 cm), where the loamy-sand layer’s properties
change gradually with depth. The initial conditions for
the flow are given by  = -3.5 m. A constant flux is at
the surface  = -0.25 m/d at day (infiltration) and

 = 0.005 m/d at day (evaporation). At the bot-

tom a drainage gradient-type BC (2-19) of
= 4 m/d is imposed, accord-

ingly, the bottom boundary can freely drain. The
parameter in the constitutive relations (van Genuchten-
Mualem model) can be found in31.

A comparison between the present solutions and the
results obtained by van Genuchten15 who used a Her-

mitian-finite element approach is exhibited in Figs. 2.7
and 2.8. Figure 2.7 displays the simulated moisture-
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Figure 2.8 Simulated moisture-content profiles during redistribution: present solutions (left) and van Genuchten’s
results15,31 (right), time in days.
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content profiles during the infiltration period at
day. The moisture-content histories during the

redistribution phase at  day of the soil column are
seen in Fig. 2.8. As shown the agreement of the results
is nearly perfect.

OKTKO aê~áå~ÖÉ=ÉñéÉêáãÉåí

Vauchaud et al.32 reported experimental results

which referred to a ditch-drained soil problem. Their
results are useful for proving and comparing numerical
schemes applied to a typical drainage problem as
already done by Gureghian33, Nützmann34 and
Nguyen35. A half drain-spacing with a length of 3 m
and a height of 2 m is considered (Fig. 2.9).

Initially, the water level in the box is at  and the
system is under hydrostatic equilibrium .
The soil is assumed to be isotropic with a saturated
conductivity of m/s. The Haverkamp
parametric model (2-11), (2-12) is used for the unsatur-
ated soil with m, m,

,  and . The initial head  is
given by 1.45 m. The water level of the ditch  is
0.75 m. The magnitude  represents the elevation of

the seepage face which is  at  and have to
be determined in the solution process (so as stated in
Section 2.4). In Vauchaud et al.’s experiment the drain-
age process has been performed without any infiltra-
tion (  on top, Fig. 2.9). Accordingly, the water
table descends continuously up to reaching the water
level  of the ditch. Figure 2.10 compare the present
numerical results with Vauchaud et al.’s experimental
data. As seen the agreement is quite well.
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Figure 2.9 Sketch of Vauchaud et al.’s drainage experiment32: geometry and boundary conditions.
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t = 0

0.1

1.0

5.0

Figure 2.10 Descending water table of the drainage experiment: simulated free-surface locations (left) and water tables
measured by Vauchaud et al.32 (right), times in hours.

Figure 2.11 Hydraulic head contour and water table location at t = 1 hour: present results (left) and Gureghian’s
solutions33,35 (right).
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Numerical results are given by Gureghian33. How-
ever, its solutions are based on a non-zero infiltration
rate . A comparison of the hydraulic head contours,
the water table and capillary fringe at time of

hour is presented in Fig. 2.11 between the present
solutions and Gureghian’s results. The agreement is
satisfactory. Differences appear for the upper head con-
tours which obviously results from different descrip-
tion of the infiltration boundary condition.

OKTKP a~ã=ëÉÉé~ÖÉ

This example is that of a transient seepage through
an earth dam. The cross-sectional view and the applied
finite-element mesh is displayed in Fig. 2.12. The sim-
ulations are performed to study hydrodynamic influ-
ences and effects in constructing a dam. A situation is
considered where the horizontal drain of the dam fails
and the drainage occurs at the dam toe and the seepage
face along the slope. Figure 2.13 exhibits the simulated
free surface development and the finally reached flow
net if the dam consists of a homogeneous material of

sand. As revealed in Fig. 2.13 the free surface reaches
the dam toe where large flow gradients occur.

Expectedly, if the dam is built with a sloping core
the flow regime is significantly altered. Figure 2.14
shows the simulated water table history in the dam and
the equipotential and streamline pattern after reaching
the final time stage. As one can see in Fig. 2.14 the zero
pressure surface may intermediately have an inverted
shape. It results from the antecedent moisture condi-
tions in the unsaturated zone (redistribution of the ini-
tial moisture content). It is apparent, this situation
cannot be handled with a classic free-surface modeling
approach. 

A 3D extension of the dam seepage problem is
exhibited in Fig. 2.15 for studying the flow regime if
the horizontal drain of the dam is only partially opera-
tive. It reveals how drain elements positioned at the
dam toe and at a given distance can effectively dewater
the downstream part of a dam consisting of homoge-
neous sandy material.

v

t 1=

70 m

12
 m

15
 m

Figure 2.12 Earth dam with finite element tessellation.
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Figure 2.13 a) Advance of free surface ( ) in time after raising the water level in the reservoir, b) com-
puted flow net (equipotential and streamlines) for the steady-state seepage.

ψ 0=

a)

b)

Figure 2.14 Solutions at a sloping core of the dam: a) advance of free surface ( ) in time, b) computed
equipotential and streamlines for the steady-state stage.
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To compare the moving mesh strategy against fixed
grid techniques of the pseudo-unsaturated modeling
and the true unsaturated-saturated modeling approach
let us consider a simplistic mine with a given pit geom-
etry as shown in Fig. 2.16a. The pyramidal pit body
will be filled by a water discharge of 792 m3/d. The pit
is initially dry (air-filled) and we assume for this in-pit
domain a hydraulic conductivity of 100 m/s and stor-
age coefficients of  and . The surround-
ing aquifer is considered impermeable, i.e.,

m/s and . As the solution the fill-
ing curve h = h(t) is to be determined. For the given
case an analytical solution for the filling water height
can be derived

(2-40)

Using the moving mesh only two layers are sufficient
to describe exactly the stratigraphic relationships of the
pit (Fig. 2.16b), where the upper layer represents the
‘air’ domain to be filled. On the other hand, using the
pseudo-unsaturated modeling approach a fixed mesh
requires more layers to adapt reasonably the slope
geometry of the pit. We choose 5 layers as shown in
Fig. 2.16c. As the result, the example has been proven
to be a superior test case to study the accuracy of the
different mesh strategies and algorithms regarding the
geometry-determined temporal storage in the flooding
process of the pit. As evidenced in Fig. 2.16d for the
computed filling curves the moving mesh gives an
excellent agreement with the analytical solutions while

Figure 2.15 Computed 3D water table (  isosurface) for a homogeneous earth dam if partial drain elements operate.ψ 0=

εe 1= So 0=

K 10 9–= εe So 0= =

h 1000 5.94 t⋅+3 10–=
h in meters, t in days( )
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the common fixed mesh strategy apparently yields
quite erroneous results. The parameter alignment and

joining techniques of the BASD retain a high accuracy.

It is interesting to know whether a true unsaturated-
saturated modeling approach is also appropriate to sim-
ulate even open pit flooding processes. Clearly, an air-
filled mine body cannot be affected by capillary pres-
sure relationships. Nevertheless, the variable saturation
mechanism should allow to model the water table posi-
tion (as the zero pressure head) in the mine regarded as

a fillable ’porous’ room. The unsaturated approach
serves as a contrivance to smooth the numerical solu-
tions.

Applying the unsaturated-saturated modeling
approach to the 3D pit flooding test case the van Genu-
chten-Mualem parametric model with n = 2, A = 4 1/m,

Figure 2.16 Pit flooding test case: a) sketch
of the pyramidal pit, b) stratigraphic mesh
used for moving mesh solution with BASD
(2 layers, 3 slices, 2048 elements, 3267
nodes), c) common fixed mesh (5 layers, 6
slices, 5120 elements, 6534 nodes), d) fill-
ing curves (head versus time) for the ana-
lytic solutions compared with the BASD-
based moving and pseudo-unsaturated fixed
mesh results. 
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 = 1, , and = 1 is assumed. The simu-
lated filling curves are shown in Fig. 2.17. It reveals the
following: The accuracy of the solution is strongly
dependent on the mesh refinement. Using only 4 layers
to approximate the pit body (equivalent to the above
pseudo-unsaturated approach) the obtained filling
curve is kinky and inaccurate. This is similar to
pseudo-unsaturated approach as exhibited in Fig. 2.16.
If more layers are applied the curve becomes a smooth
shape and approaches to the analytical solution (Fig.
2.17).

The mesh effect of the unsaturated-saturated model-
ing approach can be better shown along a very simple
2D rectangular pit geometry. Here the filling curve is
simply given by , where an average width
of  = 300 m is assumed. Varying the number of ele-

ments in the vertical direction one obtains numerical
filling curves such as displayed in Fig. 2.18. Appar-
ently, the unsaturated-saturated modeling approach
necessitates a sufficiently discretized approximation to
find reasonable solutions for this class of problems. It
becomes clear, moving mesh strategies are here supe-
rior.

OKTKR oÉ~äJëáíÉ=ãáåáåÖ=éêçÄäÉãë

To demonstrate the efficacy of the BASD-based
moving mesh techniques for real-site applications two
practical examples are considered. The first application
refers to flooding modeling of the Königstein uranium
mine25,36. The simulation of these pit flooding pro-
cesses represents a complex task due to the complicate

ε sr
f 1 10 6–⋅= ss

f

Figure 2.17 Filling curves of the 3D pit geometry sim-
ulated by the unsaturated-saturated modeling approach
for different layer approximations in comparison with
the analytical solution.
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Figure 2.18 Filling curves of a 2D rectangular pit
geometry simulated by the unsaturated-saturated mod-
eling approach: mesh effects (varying number of verti-
cal elements) in approaching to the analytical solution.
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hydrogeological conditions, the existence of free sur-
faces, density effects, high parameter contrasts, diffi-
cult geometric forms of the pit with its wide-spread
network of adits, drifts, shafts, and open rooms, and the
specific contaminant sources resulting from the applied
in-situ uranium leaching of low-grade ores in sand-
stone blocks36. Both regional models with more than
300,000 discretized elements and local in-pit models
were built up (Fig. 2.19a). The latter were used to sim-
ulate the hydraulic and contaminant transport processes
in an experimental flooding area. Figure 2.19b displays
the modeled hollow structure for the main stopes of the

mine incorporated into the 3D finite element mesh
(Fig. 2.19a). A visual impression of the flooding
behavior is given in Fig. 2.20 exhibiting the water and
contaminant spreading in the pit area at two selected
time stages. At early times the water primarily floods
the stopes in the lower location, penetrates vertical con-
duits and begins to wet the blocks and ‘magazines’.
Contaminant matter is flushed out from the open stopes
and is activated in the rocks as soon wet. At later times
also the upper locations are under water and more and
more blocks activate their contaminant content.

A second example demonstrates the modeling a
flooding process of a deep mine near the sea where is a
threat of saltwater intrusion. Figure 2.21 exhibits the
used finite element mesh for studying the water table
rise and saltwater intrusion in the mine area. The

BASD technique is utilized to adapt the mesh accord-
ing to the rising water table and the 3D parameter
stratigraphy. Along a representative cross-section of
the 3D mesh as shown in Fig. 2.22 the effect of the
mesh moving becomes evidenced.

Figure 2.19 Experimental flooding area simulation of the Königstein mine: a) used 3D mesh (89,130 nodes), b) modeled
main stopes by the BASD technique (isosurfaces of high conductivity).

a) b)
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Figure 2.20 Experimental flooding area simulation of the Königstein mine: computed hydraulic head at t = 0.1 d and
t = 365 d (upper), simulated contaminant distribution at t = 0.1 d and t = 365 d (lower).
VS=ö=tÜáíÉ=m~éÉêë=J=sçäK=f
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Figure 2.21 3D finite element mesh for modeling regional
mine flooding and saltwater intrusion with the BASD tech-
nique.

Figure 2.22 Cross-sectional view of the mine: mesh mov-
ing in adapting the rise of water table and fitting to strati-
graphic properties.

t = 0

t = 2 yr

t = 90 yr
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Subsurface free-surface problems in 2D and 3D
applications have been treated by both the unsaturated-
saturated modeling approach and the groundwater free-
surface modeling strategy. Fixed and moving mesh
strategies are used in dependence on the modeling
approaches. The finite element method is applied to
solve the flow, contaminant mass and heat transport
equations for variable saturation and free-surface con-
ditions. Generalized boundary and constraint condi-
tions are necessary to analyze free-surface problems for
practical usage.

Two major approaches have been raised: (1) vari-
ably saturated models with fixed meshes, and (2) free-
surface boundary condition models with adaptive
(moving) meshes. A pseudo-unsaturated modeling
approach as a further alternate is a physical approxima-
tion and represents neither a true physical unsaturated
flow nor an exact formulation of the free-surface
boundary conditions. Nevertheless, it is a widely used
conception in classic groundwater models for uncon-
fined aquifers.

A new method called BASD has been developed to
adapt automatically the finite-element mesh according
to the changing free surface. In this adaptation proce-
dure all relevant data from a hydro-stratigraphic initial
structure are transformed to the adapted mesh in such a
manner that parameter discontinuities are maintained
as best as possible (prefer parameter fit and snap before
parameter interpolation and smoothing).

In a number of examples the advantages and draw-
backs of the modeling approaches have been shown.

The unsaturated-saturated model represents the most
general approach and is appropriate for modeling com-
plex situations where the interaction with the vadose
zone is important and multiple or non-coherent free
surfaces occur. As exhibited coarse mesh approxima-
tions for unsaturated problems can lead to poor accu-
racy. Accordingly, an unsaturated-saturated model
works nicely, but only on a sufficiently fine spatial and
temporal discretization. A predictor-corrector tech-
nique with an adaptive time marching scheme of 2nd
order in time has shown to be very successful in solv-
ing the highly nonlinear equations for variable satura-
tion. In this way a h-based modeling approach gives
accurate results and the resort to mixed formulations
such as the -form of the governing Richards
equation is not necessary.

Since the true unsaturated-saturated modeling
approach normally needs finer meshes and conse-
quently increases the computational effort the classic
free-surface fully saturated modeling approach cannot
be beaten for regional groundwater problems. Here, the
moving mesh strategy with the BASD technique is a
powerful alternative. It has been successfully applied to
complex 3D flow and transport as exemplified for mine
flooding.

All described modeling approaches have been
incorporated in the finite-element simulation system
FEFLOW21. In this way, they are coming in one hand
to choose the best-suited and most powerful method for
the problem to be studied.
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ABSTRACT
The Newton method represents the numerical core of the
primary variable switching technique (PVST) which has
shown superior to conventional approaches in both unsatur-
ated flow and multi-phase flow modelling. In the context of
PVST empirically controlled strategies in time are rather
common, where the Newton convergence is attempted for a
possibly large step size. This technique is known as the tar-
get-based full Newton (TBFN) time stepping strategy. In
comparison to adaptive techniques satisfying a predefined
discretization error the TBFN results can be inaccurate in
spite of the achieved convergence in the Newton method.
The present paper aims at analysing the cause of discrepan-
cies in simulating unsaturated flows. This is done in com-
parison of analytical solutions which are based on
exponential constitutive laws.

P bêêçê=éêçé~Ö~íáçå=áå=íÜÉ=kÉïíçåJÄ~ëÉÇ=ëçäìíáçå=Åçåíêçä=çÑ=ìåë~íìê~íÉÇ=Ñäçï

PKN fåíêçÇìÅíáçå

In contrast to Picard iteration schemes common in
solving the Richards equation for unsaturated flow in
porous media, the Newton method in combination with
appropriate strategies can reduce the solution effort by
orders. This has been shown by Forsyth et al. (1995)
who introduced the idea of the primary variable switch-
ing technique (PVST) to saturated-unsaturated flow

simulations. As the major advantages the PVST is (1)
unconditionally mass-conservative with respect to the
time step size, (2) very effective and robust for dry ini-
tial conditions, (3) a Newton-based iteration method
with quadratic convergence, and (4) a general analysis
method suitable for single- and multi-phase flow prob-
lems.

To control the overall iteration process Forsyth et al.
(1995) preferred an empirical target-based full Newton
(TBFN) time stepping strategy. Recently, Diersch &
Perrochet (1999) compared the TBFN with an adaptive
temporally error-controlled predictor-corrector tech-
nique one-step Newton scheme (PCOSN). In their
extensive numerical benchmark analysis Diersch &
Perrochet (1999) found that, in spite of the achieved
iteration convergence, TBFN results can be rather
depart from PCOSN findings, unless the target change
parameters, and accordingly the step sizes, are kept
sufficiently small. In continuing the analysis the
present paper aims at a quantification of the resulting
errors along analytical solutions for the Richards equa-
tion based on exponential saturation-pressure and con-
ductivity-pressure relationships.
P
bêêçê=éêçé~Ö~íáçå=áå=íÜÉ=kÉïíçåJÄ~ëÉÇ=ëçäìíáçå
Åçåíêçä=çÑ=ìåë~íìê~íÉÇ=Ñäçï
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The present finite-element model is based on the
Richards equation written in the following form

(3-1)

which has to be solved either for  or . In (3-1),

pressure head, (  saturated medium, 
unsaturated medium);
saturation, ( ,  if medium is satu-
rated);
time;
specific storage due to fluid and medium com-
pressibility;
porosity;

relative hydraulic conductivity ( ,
 if saturated at );

tensor of hydraulic conductivity for the saturated
medium (anisotropy);
buoyancy coefficient including fluid density
effects;
gravitational unit vector;
specific mass supply;
residual;

Constitutive relationships are additionally required
(1) for the saturation  as a function of the pressure
(capillary) head , as well as its inverse, the pressure
head  as a function of the saturation , and (2) for the
relative hydraulic conductivity  as a function of
either the pressure head  or the saturation :

(3-2)

Here, van Genuchten or Brooks-Corey parametric
models are common (cf. Diersch & Perrochet, 1999).
Instead, if exponential constitutive laws are preferred
in the form

(3-3)

analytical solutions of the nonlinear Richards equation
can be derived. In (3-3),  is the air entry pressure
head,  is the residual saturation and  is a con-
stant.

PKP kÉïíçå=jÉíÜçÇ=~åÇ=mspq

The discretized form of the basic Richards equa-
tions (3-1) yields

(3-4)

to be solved for a primary variable

(3-5)

which can be either  or  at the new time level n+1.
Applying the Newton method to (3-4) we solve

(3-6)
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with the increment

(3-7)

and the Jacobian  expressed in indicial notation as

(3-8)

where  denotes the iteration number. The PVST
selects the primary variable in a dynamic manner
depending on inner nodal criteria of the solutions,  or

. The derivatives of the Jacobian can be easily
switched between  and  in accordance with the
computational requirements. Their computations can
be done either analytically or numerically.

PKQ qÜÉ=káííóJdêáííó

Generally, the control of the solution of the resulting
highly nonlinear matrix system (3-6) is a tricky matter.
Both the choice of the time step size  and the itera-
tion control of the Newton scheme significantly influ-
ence the success and the efficiency of the simulation. In
the PCOSN scheme (Diersch & Perrochet, 1999) the
nonlinear matrix system is linearized by the predictor
solutions. Temporal truncation errors can be easily esti-
mated by evaluating predictor and corrector solutions
which are the basis of an adaptive, error-controlled
time stepping and iteration strategy. In contrast, the
TBFN (Forsyth et al., 1995) does not consider tempo-
ral truncation errors in the time and iteration control.
The only criterion is the Newton convergence for a

possibly large time step size. The step size is deter-
mined from a desired change in the variable per time
step given by user-specified targets.

An important aspect of the iterative solution via the
PCOSN and TBFN schemes is the choice of an appro-
priate convergence criterion. Limiting the temporal dis-
cretization errors deviatory (change) error measures

 are the controlling criteria, which are func-
tions of the solution differences :

(3-9)

where  is a user-specified deviatory error tolerance.
Here, weighted RMS  and maximum  error
norms can be chosen. Commonly, in the Newton
method the deviatory error criterion (3-9) represents a
standard test to terminate the iteration within the time
step. In the PCOSN the temporal truncation and the
Newton termination error measures are equivalently
used. As a result, only one error criterion and one New-
ton step per time step become necessary ( ).
Alternatively to the deviatory error estimate ,
the residual  may be directly controlled, such
as

(3-10)

where an additional error tolerance  appears and an
appropriate normalisation of the residual (here with
respect to the external supply ) is required. In the
TBFN deviatory errors  and residual errors

 can be alternatively employed. Instead of a
one-step Newton control so as done in the PCOSN the
predictor-corrector technique can also be extended to a
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multiple step Newton (PCMSN) strategy satisfying
both criteria (3-9) and (3-10). To measure the global
balance error we introduce

(3-11)

for the ’accumulated loss’ of mass with respect to the
total external supply over the entire simulation period
(0, ).

PKR ^å~äóíáÅ~ä=pçäìíáçå

In one dimension the Richards equation (3-1)

(3-12)

can be transformed into the linear advective-dispersive
equation of the form

(3-13)

for the exponential constitutive law (3-3) by using the
following assumptions:  and 
is oriented downward in the direction of gravity.

With  and  the solution is

(3-14)

It can be easily seen from (3-13) that with large  the
problem is dominated by advection. Otherwise, consid-
ering a fully implicit time discretization the temporal
numerical dispersion can be estimated to

(3-15)

PKS qÉëí=`~ëÉ

The problem is described in Fig. 3.1. For the lower
boundary a free drainage-type boundary condition is
applied (Diersch, 1998). The 6 m column is discretized
by 120 linear elements, so the nodal spacing becomes

 cm.

PKSKN kÉïíçå= Åçåíêçä= Äó= íÜÉ= ÇÉîá~J
íçêó=Éêêçê=ÅêáíÉêáçå=EPJVF

The computed saturation profiles for two α-parame-
ters in comparison with the analytical solution are
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shown in Fig. 3.2. Large conservation errors are
observed for the TBFN if the number of time and
accordingly Newton steps become small. For

 20 and 61 time steps (49 and 116 Newton
steps) are needed for the constraints  and

, respectively. It leads to the total inte-
gral balance errors (3-11) of 
and , respectively. In contrast, the PCOSN took
240 variable time and Newton steps resulting an
acceptable balance error of only  with a
very good agreement with the analytical solution. Sim-
ilar results appear for , where the TBF
gives  (74 time and 344 Newton steps) and

 (107 time and 301 Newton steps), respec-
tively, while the PCOSN obtains  after
360 time and Newton steps.

PKSKO kÉïíçå=Åçåíêçä=Äó=íÜÉ=êÉëáÇì~ä
Éêêçê=ÅêáíÉêáçå=EPJNMF

As outlined in Fig. 3.3 the conservative problems
disappears for the TBFN if the residual error criterion
(3-10) is used with . The adaptive PCMSN
and the TBFN gives comparable results which agree
quite well with the analytical solution. Here, the
PCMSN is now controlled by two the criteria (3-9) and
(3-10):  for the time adaptation and

 for the Newton termination, where more
than one Newton step per time increment can occur.
The TBFN needed 49 time (279 Newton) and 133 time
(502 Newton) steps for  and ,
respectively, achieving total balance errors of

 and , respectively. Expect-
edly, the PCMSN took more time steps. We found 164
time (268 Newton) steps with  and 165
time (362 Newton) with  for

 and , respectively.

α 5 m 1–=
∆tmax 0.2 d=

∆tmax 0.05 d=
ℜ 3 d( ) 160%≈

 40%≈

ℜ 3 d( ) 0.06%≈

α 200 m 1–=
ℜ 3 d( ) 7%≈

ℜ 3 d( ) 2%≈
ℜ 3 d( ) 0.09%≈

K 0.25  m d 1–=
ε 0.3=

sr 0=

α 5…200 m 1–=

si 10 20–=

z

6 
m

so 0.8=

∂ψ
∂z
------- 0=

Figure 3.1 Sketch of the test problem.

δ2 10 4–=

δ 10 4–=
δ2 10 4–=
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For the TBFN the residual error criterion should be
preferred rather than standard deviatory tests to avoid
conservation errors as long as the target change param-
eters allow large steps. On the other hand, the adaptive
PCOSN scheme sufficiently controls the solution pro-
cess by limiting time truncation errors and an addi-
tional residual test, so as done in the PCMSN scheme,
is not necessary in the most cases.
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Figure 3.2 Saturation profiles at t = 3 d for a)  and b) ,  with the deviatory
error criterion (3-9) for the Newton control, aggressive target change parameters are used for the TBFN with a
maximum time step constraint .
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Figure 3.3 Saturation profiles at t = 3 d for a)  and b) ,  with the
residual error criterion (3-10) for the Newton control.
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ABSTRACT
A shock-capturing technique is introduced for a finite ele-
ment approach of the governing balance equations of flow,
contaminant mass and heat transport in variably saturated
porous media. It represents a nonlinear method which
depends itself on the numerical solution and is characterized
by an additional discontinuity-capturing term controlling the
derivatives in the direction of the solution gradient. The
technique is embedded in a predictor-corrector scheme of
first and second order in time to handle the solution implic-
itly. The impact of the shock-capturing technique is studied
for selected applications.

Q ^=ëÜçÅâJÅ~éíìêáåÖ=ÑáåáíÉJÉäÉãÉåí=íÉÅÜåáèìÉ=Ñçê=ìåë~íìê~íÉÇJë~íìê~íÉÇ=Ñäçï=~åÇ=íê~åëéçêí=éêçÄäÉãë

QKN fåíêçÇìÅíáçå

In the numerical modeling of multidimensional trans-
port problems upwind techniques such as SUPG
(streamline-upwind Petrov-Galerkin)1 or scalar
upstream weighting2 are standard to stabilize the solu-
tions when convection becomes highly dominant.
While the classic artificial diffusion method often suf-
fers in a considerable smearing of steep fronts3 the
SUPG formulation cannot preclude the presence of
overshoots and undershoots in the vicinity of sharp
gradients4. For nonlinear situations, e. g., buoyancy-
driven convection, such type of oscillations may affect

the global stability of the numerical results and the
solutions fail.

It has been shown4 the streamline is not always the
appropriate upwind direction. A generalization of the
streamline concept in form of adding an additional dis-
continuity-capturing term was presented by Hughes
and Mallet5. The shock capturing (SC) method applied
to finite elements has been developed by Johnson et
al.6 and Codina7. The SC technique appears as a non-
linear method, that is, the scheme depends itself on the
numerical solution. The main idea behind shock cap-
turing is to increase the amount of damping in the
neighborhood of layers. Then, the damping to be added
must be proportional to the element residual and must
be vanish in regions where the solution is smooth and
also where the convective term of the residual is small.

In this work the SC technique is applied to multidi-
mensional nonlinear transport processes arising in den-
sity-driven and unsaturated porous medium flows.
Q
^= ëÜçÅâJÅ~éíìêáåÖ= ÑáåáíÉJÉäÉãÉåí= íÉÅÜåáèìÉ= Ñçê
ìåë~íìê~íÉÇJë~íìê~íÉÇ= Ñäçï=~åÇ= íê~åëéçêí=éêçÄJ
äÉãë
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The basic idea is to employ an asymmetric weak
formulation

(4-1)

where the first term is the standard Galerkin test func-
tion, the second term is the linear SUPG modification
and the third term is the nonlinear discontinuity-captur-
ing operator. The vector  is the projection of the
velocity vector  onto the direction of the local gradi-
ent  of a solution . Then, the parameters  and

 are defined as

(4-2)

where  is an upwind parameter2 and  is the element
size. Considering, for simplicity, the transient convec-
tion-diffusion transport equation of the scalar quantity

(4-3)

where  is the tensor of hydrodynamic dispersion and
 is a sink/source, and introducing the spatial residual

(4-4)

the weak form of (4-3) by using the generalized test
function (4-1) introduces an isotropic shock capturing

dispersion coefficient in the form6,7

(4-5)

if  and zero otherwise. The upwind function
 is given by

(4-6)

In principle, the shock capturing dispersion coefficient
 could be added to the dispersion tensor both in the

longitudinal and transverse direction of the flow. How-
ever, a lower order time discretization can already
introduce a damping measure along the streamlines of
magnitude

(4-7)

and the final shock capturing is anisotropic and the dis-
persion tensor yields the form

(4-8)

with the total longitudinal and transverse dispersivities,
respectively,

(4-9)
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QKP=fãéäÉãÉåí~íáçå
where  are the true ‘physical’ dispersivities, 
is the diffusion coefficient, and  is the unit tensor.
Notice, for a higher-order time discretization (e.g.,
Crank-Nicolson scheme)  is to be neglected.

The terms corresponding to the shock capturing dis-
persion (4-5) are nonlinear and an appropriate numeri-
cal treatment is required. SC techniques are often
employed with explicit time discretization. However,
due to the strong stability bounds of explicit
approaches for the solution of the present problems an
implicit version of the SC technique is preferred. It is
based on a predictor-corrector scheme which is imple-
mented for unsaturated-saturated flow, mass and heat
transport processes.

QKP fãéäÉãÉåí~íáçå

The 2D and 3D finite-element discretization of the
coupled unsaturated-saturated flow, mass and heat
transport problems leads to the following matrix sys-
tem

(4-10)

to solve the hydraulic head , the fluid saturation ,
the Darcy fluxes , the concentration , and the tem-
perature . A first order FE/BE (Forward Euler/Back-
ward Euler) and a second order AB/TR (Adams-Bash-

forth/Trapezoid Rule) predictor-corrector approach
with a one-step full Newton technique are applied8.
Finally, the semi-implicit corrector step yields the fol-
lowing matrix form:

(4-11)

where  is 2 for the TR and 1 for the BE scheme,  is
1 for the TR and 0 for the BE scheme, 
is the derivation of the saturation with respect to the
hydraulic head and is a given function,  designates
the time level, subscript  indicates the explicit predic-
tor solutions obtained from FE or AB schemes8, and 
represents the corresponding partial Jacobian of the
Newton method. The nonlinearities appearing in the
matrices  and which are caused by both the physical
problem and the nonlinear shock-capturing parameter
(4-5) are linearized by using the predictor values. The
solution is automatically controlled by an error-based
timestep adaptation. Notice, as seen in (4-11) the unsat-
urated flow equations of the Richards type are treated
in a mixed saturated-head variable formulation pos-
sessing good conservative properties.
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Hoopes and Harlemann9 performed a number of
experiments using a sand model to measure the distri-
bution of a solute between recharging and discharging
wells in the saturated zone. Figure 4.1a shows the
coarse unstructured 2D mesh used to compare the
results at time t = 0.2 d for the Galerkin method (Fig
4.1b), the SUPG scheme (Fig. 4.1c) and the proposed

SC method (Fig. 4.1d). Following parameters have
been used: injection rate  = 6.433 m2/d,  = 0,  =
0.0015 m,  = 0 (for more details see10).

It reveals the Galerkin scheme produces significant
wiggles while the SUPG and the SC schemes give sta-
ble solutions. The SC results appear superior to the
SUPG distribution. The SC scheme introduces a
smaller amount of upwind and exhibits more accurate
results. 

q Dd βL
βT

a) b)

c) d)

Figure 4.1 Comparison for Hoopes and Harlemann’s experiment: a) used mesh, b) Galer-
kin (no upwind), c) SUPG, d) shock capturing.
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The advantage of the SC method becomes more
apparent if considering the following density-driven
problem (Fig 4.2).

Figure 4.2 a) domain, b) used mesh
(17,336 nodes; 33,198 triangles).

1m

0.
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K = 10-4 m/s

a)

b)

Dd = 10-9 m2/s
βL = βT = 0 m

a)

b)

c)

d)

Figure 4.3 Computed solute distribution for
the SUPG (left column) and the SC scheme
(right column) at different times: a) 0.5 d, b)
1.5 d, c) 2.5 d, and d) 100 d.
cbcilt=ö=NNP
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In a 2D box of a saturated porous medium with
impervious boundaries a heavy solute with a concen-
tration of 400 g/l is initially placed at an upper location.
The background concentration is 50 g/l and mechanical
dispersion should be neglected. It becomes clear that
the gravity-induced sinking process of the solute is dif-
ficult to model because the buoyancy forces are very
large. Otherwise, it is to be expected that discretization
effects becomes significant due to different damping
measures required in the numerical solution. An
unstructured mesh of a medium resolution is used for
comparing the SUPG and SC schemes. The results are
displayed in Fig. 4.3. As shown the evolving pattern
formations are quite different for both schemes. It
clearly reveals the overdiffusive property of the SUPG
scheme against the superior SC method. Notice, a
Galerkin approach cannot be successful for the used
mesh.

QKQKP fåÑáäíê~íáçå= áåíç= ~å= áåáíá~ääó= Çêó
êÉÖáçå

This unsaturated heterogeneous 2D problem was
introduced by Forsyth and Kropinski11 to study
upstream weighting methods. The problem is difficult
to solve due to both the initially dry condition (initial
capillary pressure head of -100 m) and the flat capillary
pressure curve (van Genuchten pore size distribution
index of 5). The flow problem11 and an accompanying
transport problem of an infiltrated tracer (with  =
10-9 m2/s,  = 0.05 m,  = 0.005 m) is simulated by
using the SC method on a coarse 90x21 quadrilateral
mesh, which is comparable to11. The resulting distribu-
tions for the saturation and the solute at time t = 30 d

are exhibited in Fig. 4.4. A comparison with Forsyth
and Kropinski’s saturation patterns indicates that the
present results possess a good adaptation of steep gra-
dients without spurious oscillations. Such a steepness
was achieved by Forsyth and Kropinski only at a finer
mesh. There, the agreement is quite well.

Dd
βL βT

a)

b)

Figure 4.4 Simulated distributions of a) saturation
and b) solute for the Forsyth and Kropinski’s
problem11 at t = 30 d by using the SC method for a
coarse 90x21 quadrilateral finite element mesh.
NNQ=ö=tÜáíÉ=m~éÉêë=J=sçäK=f
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The nonlinear SC method have shown to be supe-
rior to a common SUPG scheme. It improves numerical
stability by introducing crosswind dispersion in the
neighborhood of layers. It is less overdiffusive and
does not require too much computational extra cost.
Embodied into a predictor-corrector technique the SC
method can be used in an implicit mode and is easy to
implement. This makes it an attractive technique for
practical usage. The SC method is available in the
FEFLOW code10.
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RKN bêêçêë=~åÇ=jÉ~ëìêÉë

Mathematically, an error  can be considered as the
difference between an approximate  and an exact
solution 

(5-1)

Note,  stands for a primary solution variable, which
is typically in FEFLOW the hydraulic head , the con-
centration  or the temperature .

The specification of a local error in the form (5-1) is
generally not appropriate and more general error mea-
sures are required. For this reason various ’norms’ rep-
resenting some integral scalar quantity are often
introduced to measure errors. In an abstract sense the
vector (or Hölder) norm, so-called Lp norm, is the most
general expression for an error measure, viz.,

(5-2)

where  represents the number of vector elements. In
practical applications the error norm should be appro-
priately chosen to focus on the particular quantity of
interest. As the result, in varying  one can emphasize
the maximum differences occurred in the solution or
one has more interest in an average and integral mea-
sure of the error. While the former is a much stronger
measure and focus on local effects, the latter gives
often a representative measure of the overall error in
the entire solution space. Accordingly, FEFLOW uses
different norms in measuring errors which can be
optionally chosen. 

RKO bêêçêë=aÉêáîÉÇ=Ñçê=kìãÉêJ
áÅ~ä=pÅÜÉãÉë

The used specific form of the error measure
depends on the numerical context. For instance, for a
simple iterative scheme applied at a given time level it
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has the form

(5-3)

where  corresponds to the iteration counter. On the
other hand, in using the predictor-corrector techniques
with automatic time stepping the errors are derived for
the Forward Euler/Backward Euler (FE/BE) scheme as

(5-4)

and for the Adams-Bashforth/Trapezoid rule (AB/TR)
scheme as

(5-5)

where the superscript  indicates the predictor solu-
tion, the subscript  is the time level, and  is the
time increment.

RKOKN bìÅäáÇÉ~å= iO= áåíÉÖê~ä= oççí
jÉ~å=pèì~êÉ=EojpF=Éêêçê=åçêã

This is the default error norm to measure an integral
error quantity. It represents an error measure which is
natural to the solution approximation of the governing
balance equations in then sense of square-integrable
functions over the solution domain:

(5-6)

where  is the maximum quantity of the solution to
normalize the  entities. The maximum  is pre-
ferred for the normalization instead of using a relative
quantity, e.g. , which would lead to too strong esti-
mates especially at starting times or if converging to
steady state.

RKOKO ^ÄëçäìíÉ=iN=áåíÉÖê~ä=Éêêçê=åçêã

This norm represents an average of the error in the
solution domain:

(5-7)

It is an alternative to the L2 RMS norm. Commonly, it
should not be the first choice (the RMS norm is often
more appropriate).

RKOKP j~ñáãìã=i =Éêêçê=åçêã

This error measure can be useful if focusing on the
maximum error occurring in the solution. The maxi-
mum norm is defined as

(5-8)
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It is the strongest measure and should be preferred if
the local error is important in the numerical process
(’scheme listens to each sound’).

RKOKQ kçêã~äáò~íáçå= Äó= ìëáåÖ= íÜÉ
ã~ñáãìã=èì~åíáíó=

The maximum quantity  of the solution
 is used to normalize the error measures (5-

6) to (5-8), where  is the space coordinate and  is the
simulation time. Its value is determined internally by
FEFLOW at the beginning of each simulation run. In
practical simulations  is no more changed during
the simulation time  and during the iteration progress

. Accordingly,  is determined at initial time and
for an initial distribution of :

(5-9)

for .

The normalization in form of 
provides dimensionless measures in (5-6) to (5-8). The
input of user-specified error tolerances in FEFLOW is
correspondingly dimensionless. In determining the
maximum quantity  at initial time via (5-9) the
user has to notify the following:

•  is computed at beginning of a simulation run
which is based on the initial distribution of  and
boundary conditions at initial time of the problem,
and remains unchanged during the progressing
time and iteration. If the problem is not source-

free (e.g., the presence of a groundwater recharge,
a mass or heat supply) or the boundary conditions
are time-dependent, the actual maximum of the
solution can increase above the magnitude of

 during the time.
• If  becomes a larger value (e.g., a hydraulic

head  is referenced to a larger elevation) small
derivations in the solutions are scaled down as
normalized quantities. For instance a derivation of
1 mm in the hydraulic head leads to different
dimensionless error measures if  is different:

, where 
30 m versus 
when . With other words, if a
dimensionless error tolerance amounts for
instance to a magnitude of , the tolerated der-
ivation in the hydraulic head is then 3 mm for the
case of  and 30 cm for the case of

• To avoid a division by zero in the normalization,
 is automatically set to 100 if the maximum

quantity is detected zero.
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SKN _~ëáÅ=qê~åëéçêí=bèì~íáçå

From conservation principles1 we have the follow-
ing transport equation for a property 

(6-1)

where

= scalar transport quantity;
= retardation;
= velocity field;
= dispersion tensor;
= sink/source;

This formulation is called divergence form. The equa-
tion (6-1) can be transformed (simplified) by incorpo-
rating the continuity equation1. It yields

(6-2)

where

=  derivative term of retardation;
=  an additional source term in which

 is the source term in the continuity equation;

This is called the convective form, which is more com-
mon and usually applied in practical modeling. The
main difference lies in the convective terms. While Eq.
(6-1) has a divergence expression  the trans-
port equation (6-2) involves a more convenient gradi-
ent relationship  for the convective term. Both
transport equations are physically equivalent, but they
lead to different formulations of boundary conditions3

in their discretized forms as shown below.

SKO pí~åÇ~êÇ= _çìåÇ~êó= `çåJ
Çáíáçåë

Let us denote the boundary of the domain  by
 where  and  are two disjoint por-

tions of the total boundary, . In the general case fol-
lowing formulations for boundary conditions (BC’s)
occur, viz.,

ψ

t∂
∂ Rψ( ) ∇ qψ( ) ∇ D ∇ψ⋅( )⋅–⋅+ Q= in   Ω

ψ
R
q
D
Q

Rd
ψ∂
t∂

------- q ∇ψ ∇ D ∇ψ⋅( )⋅–⋅+ Qψ= in   Ω

Rd Rψ( ) ψ∂⁄∂
Qψ ψQρ– Q+

Qρ

∇ qψ( )⋅

q ∇ψ⋅

Ω
∂Ω Γ1 Γ2⊗= Γ1 Γ2

∂Ω
S
^Äçìí= íÜÉ= ÇáÑÑÉêÉåÅÉ= ÄÉíïÉÉå= íÜÉ= ÅçåîÉÅíáîÉ
Ñçêã=~åÇ= íÜÉ=ÇáîÉêÖÉåÅÉ= Ñçêã=çÑ= íÜÉ= íê~åëéçêí
Éèì~íáçå
cbcilt=ö=NON
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(6-3)

where on  we have Dirichlet BC and on  it repre-
sents a more general form of a Robin type BC in which
more specific Neumann and Cauchy type BC’s as used
in FEFLOW1 are involved. If  a Neumann BC of
2nd kind results, while for  a common Cauchy
BC of 3rd kind is given. In (6-3)  corresponds to the
normal unit vector (positive outward),  and  are
prescribed boundary values of  on  and ,
respectively.

SKP tÉ~â=cçêã=çÑ=íÜÉ=`çåîÉÅJ
íáîÉ=cçêã=ESJOF

The finite element formulation is based on the fol-
lowing weak form of the transport equation (6-2).
Introducing the spatial weighting function  we get

(6-4)

We can invoke the following identity (partial integra-
tion) applied to the ’dispersive’ part

(6-5)

and rewrite (6-4) as follows:

(6-6)

Now, applying the divergence theorem (Green’s theo-
rem) on the ’dispersive’ term on the RHS of (6-6)

(6-7)

and obtain for (6-6)

(6-8)

We can easily insert the Robin-type BC (6-3) into (6-7)
to get

(6-9)

By inserting (6-9) into (6-8) the resulting weak form
for the finite element solutions is finally given by

(6-10)

It should be noticed that with this BC formulation the

ψ ψ1       on    Γ1=

n– D ∇ψ⋅( ) a ψ2 ψ–( )+⋅ b         on    Γ2= 



Γ1 Γ2

a 0=
b 0=

n
ψ1 ψ2

ψ Γ1 Γ2

w

w Rd
ψ∂
t∂

------- q ∇ψ⋅+ 
 

Ω
∫ w ∇ D ∇ψ⋅( ) Qψ+⋅[ ]

Ω
∫=

∇ w D ∇ψ⋅( )[ ]⋅
Ω
∫ w ∇ D ∇ψ⋅( )⋅[ ]

∇w D ∇ψ⋅( )⋅
Ω
∫+

Ω
∫=

w Rd
ψ∂
t∂

------- q ∇ψ⋅+ 
  ∇w D ∇ψ⋅( )⋅+

Ω
∫

∇ w D ∇ψ⋅( )[ ] wQψ+⋅{ }
Ω
∫

=

∇ w D ∇ψ⋅( )[ ]⋅
Ω
∫ wn D ∇ψ⋅( )⋅

∂Ω
∫=

w Rd
ψ∂
t∂

------- q ∇ψ⋅+ 
  ∇w D ∇ψ⋅( )⋅+

Ω
∫

wQψ wn D ∇ψ⋅( )⋅
∂Ω
∫+

Ω
∫

=

wn D ∇ψ⋅( )⋅
∂Ω
∫ w a ψ2 ψ–( ) b–[ ]

Γ2

∫=

w Rd
ψ∂
t∂

------- q ∇ψ⋅+ 
  ∇w D ∇ψ⋅( )⋅+ waψ

Γ2

∫+
Ω
∫

wQψ w aψ2 b–( )
Γ2

∫+
Ω
∫

=
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normal ’dispersive’ flux is expressed. For instance, if
, known as the natural (Neumann) condi-

tion, then the boundary is impervious for the dispersive
flux , what does not mean that the
boundary is impervious for the normal ’convective’
flux  on the boundary. But we shall see next that
this becomes possible in using the divergence form.

SKQ tÉ~â= cçêã= çÑ= íÜÉ= aáîÉêJ
ÖÉåÅÉ=cçêã=ESJNF

The weak formulation for the transport equation
(6-1) yields

(6-11)

Now we see there is one important difference to the
above convective form (6-4). Beside the ’dispersive’
term we have also to integrate the ’convective’ term by
parts, viz.,

(6-12)

Using the divergence theorem we obtain

(6-13)

where a new boundary integral term appears.

Applying this formulation together with the remain-
ing terms (analogous to above) we obtain the following

weak form

(6-14)

There is a difference between (6-14) and (6-8) regard-
ing the boundary term for . Would we express the
normal convective boundary flux as

(6-15)

and using the Robin BC type (6-3) the weak form of
the divergence form (6-14) takes the expression

(6-16)

The normal convective flux appears now on the LHS of
(6-16) and is equivalent to the following BC’s

(6-17)

rather than (6-3). In applyimg now (6-17) to the diver-
gence form (6-14) the following weak statement results

a b 0= =

n D ∇ψ⋅( )⋅ 0=

n qψ⋅

w Rd
ψ∂
t∂

------- ∇ qψ( )⋅+
Ω
∫ w ∇ D ∇ψ⋅( ) Q+⋅[ ]

Ω
∫=

w∇ qψ( )⋅
Ω
∫ ∇ wqψ( ) ψq ∇w⋅

Ω
∫–⋅

Ω
∫=

∇ wqψ( )⋅
Ω
∫ wψn q⋅

∂Ω
∫=

wRd
ψ∂
t∂

------- ψq ∇w ∇w D ∇ψ⋅( )⋅+⋅–
Ω
∫

wQ wn D ∇ψ qψ–⋅( )⋅
∂Ω
∫+

Ω
∫

=

∂Ω

wψn q⋅
∂Ω
∫ wψn q⋅

Γ2

∫=

wRd
ψ∂
t∂

------- ψq ∇w ∇w D ∇ψ⋅( )⋅+⋅– w a n+ q⋅( )ψ
Γ2

∫+
Ω
∫

wQ w aψ2 b–( )
Γ2

∫+
Ω
∫=

ψ ψ1       on    Γ1=

n– D ∇ψ qψ–⋅( ) a ψ2 ψ–( )+⋅ b          on    Γ2= 
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(6-18)

which is different to the convective weak form (6-10).
For instance, if  the corresponding natural
(Neumann) condition forces the total boundary flux
(’dispersive’ plus ’convective’) to be zero. A nonzero
value means that both the dispersive and the convective
normal flux should be known (or estimable) on . As
long as  is known there it can be handled as a
given ’reaction’ term in the LHS of (6-16). But nor-
mally, if not, for instance along some outflowing
boundary portions, this value cannot be predefined a
priori as a boundary condition and becomes automati-
cally dropped with the consequence that the boundary
becomes convectively impervious.

SKR ^Çî~åí~ÖÉë= îëK= aáë~Çî~åJ
í~ÖÉë

The (default) convective formulation (6-10)
together with the BC’s

(6-19)

is easy to handle. All BC’s need not specific consider-
ations. Along boundaries the Neumann type

 or the Cauchy type
 are appropriate for a wide

range of applications. A disadvantage of the convective

form can arise if the prescription of the ’dispersive’
boundary flux is insufficient, e.g., for an intruding con-
taminant source on a boundary portion with a given
rate.

The (optional) divergence form (6-16) is able to
conserve the total (’convective’ plus ’dispersive’)
boundary flux on boundaries:

(6-20)

Here, the Neumann type condition is
, while a Cauchy type BC takes

the form . This is
sometimes advantageous because the total flux BC is
satisfied2 instead of satisfying only the ’dispersive’
flux. However, on outflowing boundaries  is often
unknown and such a BC type requires a specific han-
dling as described in the following section.

As the sum, the convective form is much easier to
handle and sufficient for the most applications, while
the divergence form represents a totally conserved for-
mulation, however, it needs specific techniques and
additional effort for boundary conditions at outflowing
portions.

SKS e~åÇäáåÖ= çÑ= lìíÑäçïáåÖ
_çìåÇ~êáÉë= Ñçê= íÜÉ=aáîÉêJ
ÖÉåÅÉ=cçêã

At an outflowing boundary the Robin-type bound-
ary condition

wRd
ψ∂
t∂

------- ∇w D ∇ψ ψq–⋅( )⋅+ waψ
Γ2

∫+
Ω
∫

wQ w aψ2 b–( )
Γ2

∫+
Ω
∫=

a b 0= =

Γ2
n q⋅

ψ ψ1       on    Γ1=

n– D ∇ψ⋅( ) a ψ2 ψ–( )+⋅ b          on    Γ2= 



n– D ∇ψ⋅( )⋅ b=
n– D ∇ψ⋅( )⋅ a ψ2 ψ–( )–=

ψ ψ1       on    Γ1=

n– D ∇ψ qψ–⋅( ) a ψ2 ψ–( )+⋅ b          on    Γ2= 



n– D ∇ψ qψ–⋅( )⋅ b=
n– D ∇ψ qψ–⋅( )⋅ a ψ2 ψ–( )–=

n q⋅
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(6-21)

cannot be specified a priori because  is
unknown. However, this part can be computed from the
flow equation via a postprocessing balance analysis in
the following form:

The flow equation

(6-22)

where  is the hydraulic head,  is the storage coeffi-
cient and  corresponds to the tensor of hydraulic con-
ductivity, leads to the following weak formulation

(6-23)

With the given solution of  Eq. (6-23) can be explic-
itly evaluated at  according to

(6-24)

via a consistent boundary quantity method4 to give the
unknown boundary flux . Here, the boundary
quantity  is obtained from (6-24) by summing up
all nodal contributions at the corresponding boundary
portion over all adjacent finite elements 

(6-25)

As soon  becomes known at  the Robin-type
boundary condition (6-21) can be replaced by such a
type (6-19)

(6-26)

which is also used for the convective form of the trans-
port equation. With other words, at outflowing bound-
aries the divergence form turns on a ’diffusive’
Neumann-type boundary condition (6-26), e.g.,

 instead of .

Finally, at outflowing boundaries the weak form of
the transport equation (6-16) is now used as

(6-27)

with  as a given ’reaction term’ computed from (6-
24) and (6-25), and  as a ’diffusive-type’ boundary
condition based on the formulation of Eq. (6-26). In
this way, the divergence form (6-14) becomes applica-
ble for all practically important boundary conditions:
While at inflowing boundaries a total mass flux condi-
tion can be preferable, at outflowing boundaries only
the diffusive/dispersive outgoing needs to be specified,
where  appears as a natural boundary
condition for outflowing situations.

n– D ∇ψ qψ–⋅( ) a ψ2 ψ–( )+⋅ b= on Γ2

n qψ Γ2
⋅
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Considering the 2D vertical flow domain as shown
in Fig. 6.1 describing the contaminant influence on a
discharging aquifer from a leaked deposit, the differ-
ences between the convective and the divergence form
of the transport equations become apparent. The cross-
sectional domain has a length of 1000 m and a height
of 40 m. The aquifer is discharged from left to right.
The deposit contacts the aquifer on top over a length of
50 m, where contaminant matter releases. All parame-

ters and relationships are displayed in Fig. 6.1.

The boundary conditions for the flow problem are
summarized in Tab. 6.1. Accordingly, the discharge
amounts to a total flow balance of

m3/d/m, which releases
through the boundary D-E.
0.1 40 0.0125 50⋅+⋅ 4.625=

Figure 6.1 Cross-sectional domain of study (K - isotropic hydraulic conductivity,  - porosity,  - molecular diffu-
sion,  - longitudinal dispersivity,  - transverse dispersivity).

ε Dd
βL βT

250 m 50 m

40
 m

1000 m

A B C D

EF

Deposit

K =  m/s

 m2/s
 m

 m

1 10 4–⋅
ε 0.3=
Dd 1 10 9–⋅=
βL 2=
βT 0.1=
NOS=ö=tÜáíÉ=m~éÉêë=J=sçäK=f
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The boundary conditions for the contaminant mass
transport differ between the convective and the diver-
gence forms as summarized in Tabs. 6.2 and 6.3. The
contaminant release from the deposit is modeled by a
given rate. This rate represents a dispersive influx con-

dition  for the convective form according
to Eq. (6-19) and a total (dispersive plus convective)
rate  for the divergence form accord-
ing to Eq. (6-20).

Table 6.1 Flow boundary conditions

Section Type Value Unit Comment

A-B - - - unspecified (impervious)

B-C Neumann  = -0.0125 m/d influx

C-D - - - unspecified (impervious)

D-E Dirichlet h = 40 m pervious boundary (outflux)

E-F - - - unspecified (impervious)

A-F Neumann  = -0.1 m/d influx

n q⋅

n q⋅

n D ∇ψ⋅( )⋅

n D ∇ψ qψ–⋅( )⋅

Table 6.2 Boundary conditions for the convective form according to Eq. (6-19)

Section Type Value Unit Comment

A-B - - - unspecified
(impervious for dispersive fluxes 

 = 0)

B-C Neumann
(a = 0)

 =  -0.0125 g/m2/d predefined (dispersive) influx of con-
taminant

C-D - - - unspecified
(impervious for dispersive fluxes 

 = 0)

n– D ∇ψ⋅( )⋅

n– D ∇ψ⋅( )⋅

n– D ∇ψ⋅( )⋅
cbcilt=ö=NOT
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D-E - - - unspecified
(impervious for dispersive fluxes 

 = 0, however, the 
boundary is convectively pervious, 

compare Tab. 6.1)

E-F - - - unspecified
(impervious for dispersive fluxes 

 = 0)

A-F Dirichlet  = 0 g/m3 predefined concentration (entering 
freshwater)

Table 6.2 Boundary conditions for the convective form according to Eq. (6-19) (continued)

Section Type Value Unit Comment

n– D ∇ψ⋅( )⋅

n– D ∇ψ⋅( )⋅

ψ ψ1=

Table 6.3 Boundary conditions for the divergence form according to Eq. (6-20)

Section Type Value Unit Comment

A-B - - - unspecified
(impervious for total fluxes 

 = 0)

B-C Neumann
(a = 0)

 =  -0.0125 g/m2/d predefined (total) influx of contami-
nant

C-D - - - unspecified
(impervious for total fluxes 

 = 0)

D-E - - - unspecified, however,
specific handling as outflowing 

boundary in setting  = 
0 as an impervious condition for dis-

persive fluxes 

n– D ∇ψ qψ–⋅( )⋅

n– D ∇ψ qψ–⋅( )⋅

n– D ∇ψ qψ–⋅( )⋅

n– D ∇ψ⋅( )⋅
NOU=ö=tÜáíÉ=m~éÉêë=J=sçäK=f
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The computed stationary contaminant plume for the
convective form is exhibited in Fig. 6.2. The counter-
part of the divergence form is shown in Fig. 6.3. Quali-
tatively, both plumes have similar characteristics, but in
their quantity the patterns are fairly depart of each
other.

In the convective form the Neumann condition for
the contaminant release at the deposit is mimicked by a
dispersive flux  with a magnitude of 0.0125
g/m2/d. Notice, for this formulation the convective
influx at this boundary portion is not defined. To real-
ize this given rate via a dispersive mechanism (i.e.,
driven by a concentration gradient  and controlled
by the dispersion ) the concentration gradient results
automatically, where a certain concentration magnitude
appears at the deposit border section. In the present
case, the concentration increases to a maximum of
about 7.17 g/m3. In a budget analysis for the convec-
tive form a total amount of 3.45 g/m/d contaminant
mass flux appears. What is the reason for this enlarged
contaminant mass flux? In the convective form only
the dispersive part is defined at the boundary while the
convective part remains undefined. Expectedly, the dis-
persive magnitude is exactly 0.625 g/m/d. With the

given dispersivity parameters (Fig. 6.1) concentration
profiles along the deposit boundary result as shown in
Fig. 6.4. This concentrations multiplied with the flow
rate of 0.0125 m/d (Tab. 6.1) must be additionally con-
vected through the boundary. Because the concentra-
tions are relatively high the convective part must be
large. Notice, it should become clear that this convec-
tive form must fail for the given boundary conditions if
the dispersivity (and diffusion) becomes smaller and
smaller. Then, the concentration gradient tends to an
infinitely large value with the result that the convective
part of the boundary flux becomes infinitely large.

Unlike this, the divergence form echoes exactly the
distribution and balance quantities which should be
practically expected. The budget analysis results a total
contaminant release of 0.625 g/m/d through the deposit
boundary. Consequently, the concentration magnitudes
are significantly smaller (maximum value is only about
1 g/m3 at the deposit boundary) as shown in Fig. 6.4.
This means the net contaminant mass release for the
divergence form is about six times smaller than for the
convective form, which is also indicated by the depart-
ing concentration profiles of this order (Fig. 6.4).

E-F - - - unspecified
(impervious for total fluxes 

 = 0)

A-F Dirichlet  = 0 g/m3 predefined concentration (entering 
freshwater)

Table 6.3 Boundary conditions for the divergence form according to Eq. (6-20) (continued)

Section Type Value Unit Comment

n– D ∇ψ qψ–⋅( )⋅

ψ ψ1=

n D ∇ψ⋅( )⋅

∇ψ
D

cbcilt=ö=NOV
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Figure 6.2 Computed stationary contaminant distribution for the convective form (exaggeration 10 : 1).

Figure 6.3 Computed stationary contaminant distribution for the divergence form (exaggeration 10 : 1).
NPM=ö=tÜáíÉ=m~éÉêë=J=sçäK=f
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The differences between the convective and the diver-
gence forms result from the different meaning of
boundary conditions for fluxes (Neumann-type or
Cauchy-type boundary conditions) of contaminants. It
should be obvious that no differences appear if the con-
taminant source is modeled by a Dirichlet-type bound-
ary condition where the concentration is fixed. It is to
be noted that the same relationships have to be consid-
ered for heat transport phenomena.
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Figure 6.4 Concentration profiles computed along the
deposit boundary in dependence on the convective
and divergence form.
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In formulating boundary conditions (B.C.) for the
groundwater flow the prescription of a hydraulic head
(1st kind Dirichlet-type) B.C. at a given boundary por-
tion is a common task. However, in modeling density-
dependent problems such as saltwater intrusion or geo-
thermal processes these 1st kind hydraulic head B.C.’s
have to consider the specific definition of the hydraulic

head (potential)1. A typical example is the saltwater
intrusion from a sea into a coastal aquifer as schema-
tized in Fig. 7.1. While on the land side of the aquifer a
freshwater discharge can be prescribed (e.g., by a 2nd
kind Neumann flux-type B.C.), at the sea side the
boundary is formed by a given hydraulic head distribu-
tion. This hydraulic potential is measured in form of
the piezometric head at the sea which is related to the
actual fluid density of saltwater .ρs

freshwater ρo

saltwater ρs

p ρ– sgz=

Figure 7.1 Saltwater intrusion in a coastal aquifer with related boundary conditions.
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TKO qÜÉ= oÉÑÉêÉåÅÉ= eóÇê~ìäáÅ
mçíÉåíá~ä

For the groundwater flow equations1 FEFLOW pre-
fers the hydraulic head , instead of the pressure , as
the primary variable. As a consequence, the corre-
sponding B.C.’s of 1st kind (Dirichlet-type)

(7-1)

have to be expressed according to the definition of the
hydraulic potential . As described in1 the hydraulic
head variable  must be appropriately related to a ref-
erence fluid density , viz.,

(7-2)

Commonly, for saltwater intrusion problems the refer-
ence density  refers to the freshwater. 

TKP oÉÑÉêÉåÅÉ= mçíÉåíá~ä= Ñêçã
jÉ~ëìêÉÇ=eÉ~Çë

A measurement of a piezometric head is normally
related to the actual density of the groundwater. It can
be expressed by

(7-3)

where  is the density of groundwater at a known
salinity : . It should be clear that the head

 cannot be directly used as a boundary condition.
Instead, it has to be transformed to the reference
hydraulic head , Eq. (7-2). This can be simply done
under considering the following relationships:

Expanding Eq. (7-3) by 

(7-4)

we get if introducing Eq. (7-2)

(7-5)

and finally

(7-6)

Now, introducing the density difference ratio  as1

(7-7)

Eq. (7-6) can also be written in the form

(7-8)

Equations (7-6) or (7-8) have to be used to calculate the
hydraulic head  from piezometric heads  which
have been measured at a known saltwater density 
(at known salinity ).

h p

h hR= at Γ
AB

)

h
h

ρo

h p
ρog
--------- z+=

ρo

hs
p

ρsg
-------- z+=

ρs
C ρs ρs C( )=

hs

h

ρo

hs
p

ρog
---------

ρo
ρs
----- z+=

hs
ρo
ρs
-----h 1

ρo
ρs
-----– 

  z+=

h
ρs
ρo
-----hs

ρs ρo–
ρo

----------------- 
  z–=

α

α
ρs ρo–

ρo
-----------------=

h 1 α+( )hs αz–=

h hs
ρs

C

NPQ=ö=tÜáíÉ=m~éÉêë=J=sçäK=f



TKQ=eóÇêçëí~íáÅ=`çåÇáíáçå
TKQ eóÇêçëí~íáÅ=`çåÇáíáçå

Let us consider the pressure distribution in the vertical
-direction of gravity  under hydrostatic conditions.

We assume that the density  is varying lin-
early in the depth as shown in Fig 7.2:

(7-9)

The fluid is hydrostatic for the vertical problem if

(7-10)

which yields with (7-9)

(7-11)

The hydraulic head  (7-2) related to the reference
density  is then

(7-12)

At boundaries where hydrostatic conditions can be
imposed two cases are commonly of interest: (1) a con-
stant saltwater density in the depth and (2) a linear
increase of density as typical in a transition zone. Both
cases are illustrated in Fig. 7.3.
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Figure 7.2 Hydrostatic condition in a depth of  under
a linear density gradient.
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Figure 7.3 Two interesting density profiles for a
hydrostatic boundary condition.
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From (7-12) we obtain with  for the case
of a constant saltwater density (case 1)

(7-13)

For the case 2 with ,  we get from (7-
12) for a linear saltwater density (case 2)

(7-14)

The hydraulic head at the depth  is then
 for the constant density and
 for the linear density relationship.

TKR bñ~ãéäÉë

TKRKN _çìåÇ~êó=ïáíÜ=Åçåëí~åí=ÇÉåëáíó

Referring to the saltwater intrusion problem of Fig.
7.1 we assume that water table of the sea is given by

, that means we choose  at the free surface
of the sea where we have . We aim at finding a
corresponding hydraulic head condition for  which
should be imposed on the sea side of the model domain

 (cf. Fig. 7.1). Let us assume we have a density of
the seawater of = 1.029 kg/l. The freshwater has

= 1 kg/l, accordingly one gets . The thick-
ness of the aquifer should be 20 m ( ).

Applying Eq. (7-8) or (7-13) we find along the ver-
tical boundary portion  the following distribution
for the hydraulic head :

(7-15)

Accordingly, at the point A (top of the aquifer, Fig. 7.1)
we have to set  and at the point B (bottom of the
aquifer) we must set  = 0.58 m. Between these nodes
the distribution of  is linear so as seen by Eq. (7-15).

REMARK 1: The assignment of the hydraulic head 
has to be consistent with the definition of the z-coordi-
nate in the direction of gravity according to Eq. (7-8).
In contrast to the above example if we would define

 at the aquifer bottom (at point B in Fig. 7.1), 
has to be chosen as 20 m and Eq. (7-8) results

 [m], which represents an equiva-
lent prescription of the hydraulic head B.C.’s.

REMARK 2: Similar considerations are required for
thermal (thermohaline) problems if a hydraulic head
condition is to be prescribed at a boundary where the
temperature  (and salinity ) are input. In this case
the density  is deemed to be the value for the mea-
sured  (and ): . For instance, using a
linear thermal expansion of the density1 we have for a
thermohaline situation (both  and  are given here)
the following relationship

(7-16)

and Eq. (7-6) yields

(7-17)

in which  is the temperature to be prescribed at the
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boundary ,  is the reference temperature related
to the reference density , and  is a known linear
thermal expansion coefficient. (Notice, for purely ther-
mal problems  in Eq. (7-17)). To demonstrate
this relationship let us expand the above saltwater
intrusion example (Fig. 7.1). We assume the sea water
has a temperature of  while the freshwater is 
cold. The -coefficient is ,  is again 0.029.
Accordingly, the input hydraulic head  at the bound-
ary portion  varies as

(7-18)

TKRKO _çìåÇ~êó=ïáíÜ=î~êá~ÄäÉ=ÇÉåëáíó

Sometimes it is necessary to impose a transition
zone at a boundary for a saltwater intrusion process.
Such an example is shown in Fig. 7.4, where the den-
sity varies linearly through the transition zone with a
thickness of .

At such a boundary a hydraulic head condition
 has to be imposed. From Eqs. (7-14) and

(7-13) we obtain the following sample values for the
head profile as indicated in Fig. 7.4:

(7-19)
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Figure 7.4 Boundary with a predefined saltwater-freshwater transition zone.
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where  represents the hydraulic head at the boundary
which is related to the freshwater density .

kçí~íáçå

= salinity, saltwater concentration,
;

= gravitational acceleration, ;
= hydraulic head referenced to ,

;
= measured saltwater piezometric

head related to , ;
= heads at locations, ;
= pressure, ;
= temperature, ;
= boundary temperature and reference

temperature, respectively, ;
= elevation; Cartesian coordinate

along acting of gravity, ;
= density difference ratio, ;
= linear thermal expansion coefficient,

;
= depth, ;
= boundary portion;
= reference fluid density; density of

freshwater, ;
= density of saltwater, ;

oÉÑÉêÉåÅÉë

1. Diersch, H.-J. G., FEFLOW - Physical basis of modeling. Refer-
ence Manual - Part I, WASY Ltd., Berlin, 2002.

ho
ρo

C
ML 3–( )

g LT 2–( )
h ρo

L( )
hs

ρs L( )
h0 h1 h2, , L( )
p ML 1– T 2–( )
T Θ( )
Ts To,

Θ( )
z

L( )
α 1( )
β

Θ 1–( )
∆z L( )
Γ
ρo

ML 3–( )
ρs ML 3–( )
NPU=ö=tÜáíÉ=m~éÉêë=J=sçäK=f



H.-J. G. Diersch

WASY Institute for Water Resources Planning and Systems Research, Berlin, Germany
U ^å=ÉÑÑáÅáÉåí=ãÉíÜçÇ=Ñçê=ÅçãéìíáåÖ=ÖêçìåÇï~íÉê=êÉëáÇÉåÅÉ=íáãÉë

UKN fåíêçÇìÅíáçå

The computation of residence (travel) times of dis-
solved solutes in the groundwater body or the determi-
nation of the groundwater age is traditionally
performed by particle tracking methods1,2,6 based on
the advective pore velocity distributions. Unfortu-
nately, such type of technique provides only point-
related information about the groundwater age in form
of isochrones and, furthermore, neglects effects of
hydrodynamic dispersion. A certain expedient can pro-
vide random work techniques6. However, they are
again point-related approaches and are often time-con-
suming, especially for 3D applications, since a large
number of particles are needed to obtain representative
results for practical requirements.

Recently Goode5 has proposed an interesting alter-
native in contrast to the above traditional approaches.
Its method is capable of computing the groundwater
age in a direct manner (practically in one step) at any
points of the model domain. Additionally, it includes
effects of the advection, diffusion and dispersion pro-
cesses. Goode’s method can be immediately performed

by FEFLOW3 provided the basic variables, parameters
and boundary conditions are appropriately chosen.
Goode’s direct simulation strategy has taken over by
Perrochet7,4 and was successfully applied to practical
tasks by using FEFLOW. In the following the direct
age simulation strategy will be described in some
detail, which can be adapted by each FEFLOW user.
The main advantages of this approach can be summa-
rized as follows:

• It can be performed by FEFLOW in utilizing the
embodied modeling features.

• Both 2D and 3D problems are easily applicable.
• The method is effective and can be simply han-

dled.
• It also includes effects of mechanical dispersion

and diffusion.
• It can also be applied to transient flow conditions.

UKO qê~åëéçêí=bèì~íáçå=çÑ=íÜÉ
dêçìåÇï~íÉê=^ÖÉ

For a steady-state flow field the mean residence
time (’age’)  [d] can be determined from the concen-A
U
^å=ÉÑÑáÅáÉåí=ãÉíÜçÇ=Ñçê=ÅçãéìíáåÖ=ÖêçìåÇï~íÉê
êÉëáÇÉåÅÉ=íáãÉë
cbcilt=ö=NPV
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tration  [mg/l] of a tracer injected as an impulse at
time zero5. Accordingly, at any point in the model
domain the age  of the groundwater is considered as a
concentration-weighted travel time, viz.,

(8-1)

where  is the time and  corresponds to the concen-
tration of the tracer. The dissolved concentration of the
tracer have to satisfy the law of mass conservation
written in form of the advection-dispersion transport
equation5:

(8-2)

where  is the porosity,  is the Darcy velocity vector
and  represents the tensor of the hydrodynamic dis-
persion which includes effects of molecular diffusion

, longitudinal and transverse dispersivities , ,
respectively. Multiplying Eq. (8-2) by time, integrating
through all times, applying partial integration and
inserting the definition (8-1), one finally obtains a
transport equation of the following type

 (8-3)

Equation (8-3) represents a steady-state transport
equation in which the mean age  is the primary vari-
able and the porosity  appears as an ’age source’ term
of unit strength on the right-hand side. (It should be
noted for a depth-integrated horizontal 2D transport
equation the age source is , where  corresponds to

the thickness of the aquifer.)

To solve Eq. (8-3) for the age  under a given
steady groundwater flow field  appropriate boundary
conditions of 1st kind (Dirichlet-type) and 2nd kind
(Neumann-type) along inflowing and outflowing
boundary sections have to be prescribed in the follow-
ing manner: At inflowing boundaries the groundwater
age  can be usually imposed as a 1st kind boundary
condition, for instance, if setting  the age (as a
relative time) is considered as the beginning time on
such a boundary section. On the other hand, along out-
flowing boundaries a natural 2nd kind Neumann condi-
tion can often be specified as , i.e., the
age in normal direction  to the boundary does not
change anymore (for instance typically if groundwater
leaves the aquifer and enters surface water).

UKP tçêâáåÖ=píÉéë=áå=cbcilt

The solution of the age transport equation (8-3) in
2D and 3D can be simply performed by FEFLOW. One
utilizes the implemented transport equations which are
basically available in terms of either the contaminant
mass  or the temperature  variables. Instead, the
solution of the mass (or heat) transport equation is
mimicked for the age . The following working steps
are now useful:

(1) Specification of a steady-state flow problem in a
common manner.

(2) Extension of the problem class to a transport prob-
lem. We recommend a mass transport problem under
steady-state conditions (i.e., steady flow - steady mass
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transport).

(3) Formulation of boundary conditions for the age ,
e.g.,  at inflowing boundaries and

 at outflowing boundaries.

(4) Specification of the material conditions, where
properly the source term of zero order (’sink/source’) is
to be set as the age source in form of  (or ). (Note,
FEFLOW’s problem editor provides copy functions
which benefits the assignment of the age source from
porosity data).

(5) Solution of the steady flow and the age transport
equations in one step. The evaluation of the results can
be done by the standard tools available in FEFLOW for
the concentration, e.g., isoline plotting, 3D visualiza-
tion, data exporting etc.

There is also a trick7 if the age computation is
required parallel to another transport equation so as
needed for density-driven processes. In this case the
problem is classified as a thermohaline problem in
which flow, mass and heat transport are simultaneously
simulated. Either the mass or the heat transport equa-
tion can then be used as the age transport equation.
This allows an new approach to the analysis of resi-
dence times for complex flow situations which were
impossible to date.

UKQ aÉãçåëíê~íáîÉ=bñ~ãéäÉ

Let us consider two aquifers which are separated by
an aquitard. The ratio of the hydraulic conductivities of
the aquitard to the both aquifers is amounted to 1 :

1000. Furthermore, we assume a disturbance in the
aquitard in form of local ’hydrogeologic window’,
through which the lower aquifer can be threatened. The
hydrogeologic window should have the same conduc-
tivity than the aquifer. On top of the upper aquifer
groundwater recharge is input. The following questions
arise: At which travel times do surface-entering con-
taminants arrive the groundwater at different depths?
How is the influence of mechanical dispersion and dif-
fusion? What are the differences between a 2D and 3D
modeling of the hydrogeologic window in the aqui-
tard?

We start with a 2D modeling. Figure 8.1 displays
the cross-section of a 2D vertical model, where the
depicted steady-state pathlines and isochrones are
obtained by the traditional particle tracking approach
available in FEFLOW too.

A
A 0=

n D ∇A⋅( )⋅ 0=

ε Bε
cbcilt=ö=NQN
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Now, the computation of the same problem via the
direct simulation of the groundwater age results a dis-
tribution of ages  for 10, 20,. 30, 40 and 50 years in
an isoline plot as shown in Fig. 8.2. Along the upper
boundary on which groundwater recharge is entering,
the age  is set to zero. A comparison of the results
(Fig. 8.2) with the particle tracking analysis (Fig. 8.1)
reveals a close agreement. Both simulations are per-
formed on the same mesh. The comparison between the
traditional particle tracking and Goode’s direct age
simulation requires negligible dispersion. Accordingly,
the results of Fig. 8.2 have been achieved by suppress-
ing the dispersivities ( ). To stabilize the
solution for the direct age simulation a streamline-
upwind method was used.

The effect of the hydrodynamic dispersion can be
seen in Fig. 8.3 for the depicted age distribution. Com-

pared to the case without dispersion (Fig. 8.2) two
main differences appears which can be of certain
importance for practical applications: (1) If dispersion
is considered the age is reduced in locations which are
mainly advectively affected as can be seen in the flow
region directly below the hydrogeologic window. It
means a longer travel time is required before a recharge
influence starting from the surface travels to a point in
the lower aquifer. This is caused by the dispersion,
where flow particles have to go a longer pathway
within the void space. However, a contrary effect can
be observed at the aquifer-aquitard contact zone. (2)
The age increases at the occurrence of hydrodynamic
dispersion (including diffusion) in impermeable or
low-permeable parts. This reveals physicochemical
effects on the travel times of the groundwater below the
aquitard which cannot be studied by common particle
tracking methods. 

Figure 8.1 2D (exaggerated) cross-sectional domain with pathlines and isochrones at 10, 20, 30, 40 and 50
years simulated by FEFLOW’s traditional particle tracking approach.
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βL βT 0= =
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Figure 8.2  Computed ages for 10, 20, 30, 40 and 50 years by the direct simulation of groundwater age (exag-
gerated cross-section), without mechanical dispersion .βL βT 0= =

Figure 8.3  Computed ages for 10, 20, 30, 40 and 50 years by the direct simulation of groundwater age (exag-
gerated cross-section), with mechanical dispersion.
cbcilt=ö=NQP
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The use of Goode’s direct age simulation is simply
possible in the same way for 3D application, which will
be shown next along the above two-aquifer-aquitard
problem. Now we assume that the hydrogeologic win-
dow in the aquifer has a three-dimensional extent. If we
use the traditional particle tracking method also avail-
able for 3D in FEFLOW we can find pathlines and iso-
chrone patterns so as displayed in Fig. 8.4. Since each
particle tracking event is always related to single start-
ing point one needs many points, especially in 3D, to
get a possibly closed representation and to record
(hopefully) all critical locations. For complex applica-
tions this leads immediately to a ’chaos’ of lines and
markers in the 3D space. In contrast to that, the pro-
posed direct age simulation does not suffer in such dif-
ficulties. Here, the groundwater age represents a scalar
quantity computed at each node of a mesh. It can be
evaluated by using the available postprocessing tools,
for instance, isolines or fringes in slices, through arbi-
trary cross-sections and 3D displays so as exemplified
in Fig. 8.5 showing the age distribution for 50 years in
form of a 3D isosurface.

UKR `çåÅäìÇáåÖ=oÉã~êâë

The computation of the age and residence times of
groundwater can be easily and efficiently performed by
the present Goode method. It is applicable in both 2D
and 3D cases. The direct age simulation is a welcome
completion of particle tracking approaches; especially
in such cases if effects of hydrodynamic dispersion
becomes important, e.g., for capture zone assessments,
or, more generally, in order to make cross-checks
against the traditional particle tracking method and to
obtained closed and better representations of residence

times in 3D applications. It should be mentioned that
the direct age simulation can also be performed in the
sense of a backtracing. In this case the boundary condi-
tions for the groundwater age have to be ’reversed’
(inflow boundaries becoming outflow boundaries, and
vice versa). For backtracing a reverse flow field is nec-
essary during the age computations. FEFLOW pro-
vides a specific option termed as ’Reverse flow field’
which can be set in the ’Specific option settings’ menu.
Further modifications of Goode’s method appears pos-
sible. The extensions to transient flow problems are
described by Goode5 and Varne & Carrera8.
NQQ=ö=tÜáíÉ=m~éÉêë=J=sçäK=f
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Figure 8.4  3D pathlines at selected starting points and isochrones marked at 10, 20, 30, 40 and 50 years as computed
by FEFLOW’s particle tracking method.
cbcilt=ö=NQR
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Figure 8.5  Computed age distribution for 50 years in the 3D flow domain forming a 3D isosurface.
NQS=ö=tÜáíÉ=m~éÉêë=J=sçäK=f
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VKN qÜÉ= aáëÅêÉíÉ= cÉ~íìêÉ
^ééêç~ÅÜ

The discrete feature approach provides the crucial
link between the complex geometries for subsurface
and surface continua in modeling flow, contaminant
mass and heat transport processes. In this holistic
approach a three-dimensional geometry of the subsur-
face domain (aquifer system, rock masses) in describ-
ing a porous matrix structure can be combined by
interconnected one-dimensional and/or two-dimen-
sional features as shown in Fig. 9.1. In the finite-ele-
ment context the three-dimensional mesh for the
porous matrix can be enriched by both ’bar’ (channels,
mine stopes) and areal (overland, fault) elements.

VKO qÜÉ= Na= ~åÇ= Oa= aáëÅêÉíÉ
cÉ~íìêÉ=bäÉãÉåíë=rëÉÇ

FEFLOW2 provides 1D and 2D discrete feature ele-
ments which can be mixed with the porous matrix ele-
ments in two and three dimensions. Different laws of

fluid motion can be defined within such discrete fea-
tures, e.g., Darcy, Hagen-Poiseuille or Manning-Strick-
ler laws. Both the geometric and physical
characteristics of the discrete feature elements provide
a large flexibility in modeling complex situations.
Table 9.1 summarizes the most important characteris-
tics and typical applications for the used 1D and 2D (as
well as 3D porous media) features.

Apparently, the range of applications and the
dimension of the features require an unified approach,
where linear and nonlinear laws of fluid motion, porous
media and free fluid flows, phreatic and non-phreatic
conditions as well as spatial (3D), plane (1D, 2D) and
axisymmetric (1D) geometries are embodied.

VKP mêÉäáãáå~êáÉë

VKPKN cìåÇ~ãÉåí~ä= Ä~ä~åÅÉ= ëí~íÉJ
ãÉåí

The conservation of mass, momentum and energy is
described by the balance statement2 (symbols are listed
V
aáëÅêÉíÉ=ÑÉ~íìêÉ=ãçÇÉäáåÖ=çÑ=ÑäçïI=ã~ëë=~åÇ=ÜÉ~í
íê~åëéçêí=éêçÅÉëëÉë=Äó=ìëáåÖ=cbcilt
cbcilt=ö=NQV
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in the Appendix A ’Nomenclature’)

 (9-1)

conserving the (extensive) quantity . Individual
balance laws for ,  and  are summarized in
Tab. 9.2. 

ρψ( )∂
t∂

--------------- ∇ ρψv( ) ∇ j⋅+⋅+ ρf=

ρψ( )
ρψ( ) j ρf

runoff surface

1D channel element

2D fracture element

river

aquifer

well

fault

3D porous matrix element

unsaturated zone

saturated zone

Figure 9.1 Schematization of a subsurface modeling system by combining discrete feature elements with volume dis-
cretizations of the total study domain: 1D elements are used to approximate rivers, channels, wells and specific faults,
2D feature elements are appropriate for modeling runoff processes, fractured surfaces and faulty zones, and 3D ele-
ments represents the basic tessellation of the subsurface domain consisting of an aquifer-aquitard system and involving
unsaturated and saturated zones.
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VKPKO cçêãë=çÑ=Ä~ä~åÅÉ=Éèì~íáçåë

According to the applications for the discrete fea-
ture elements indicated above we are interested in four
forms of the governing balance equation (9-1):

• form A: free fluid balance law
• form B: vertically integrated free fluid balance

law
• form C: porous medium balance law
• form D: vertically integrated porous medium bal-

ance law

The form A is already represented by Eq. (9-1).
A vertical integration of (9-1) over a depth  can be
rigorously performed as described in2,3,8 leading to the
form B:

(9-2)

with the new exchange terms of the quantity  at the
top and bottom boundaries

(9-3)

Notice, the balance quantities of Eq. (9-2) are now
averaged over the depth .
The transformation of the balance equation (9-1) to a
porous medium is performed by a spatial averaging

Table 9.1 Used discrete feature elements

Type Fluid motion 
law Dimension Application

Darcy
Hagen-Poi-

seuille
Manning-
Strickler

1D, plane
(phreatic, non-

phreatic)

channels
mine stopes

1D, axisym-
metric

(phreatic, non-
phreatic)

pumping wells
abandoned 
wells, bore-

holes

Darcy
Hagen-Poi-

seuille
Manning-
Strickler

2D, plane
(non-phreatic)

fractures
faults

2D, plane
(phreatic)

runoff
overland flow

Darcy
3D

(phreatic, non-
phreatic)

porous media
aquifer systems

Table 9.2 Balance laws

Quantity

mass
fluid mass
contami-
nant mass

0

momentum

energy

ρψ j ρf

ρ

C jc

ρQρ

rc

ρv σ ρg

ρ E 1
2
---v2+ 

  σ v jT+⋅ ρ g v QT+⋅( )

B

Bρψ( )∂
t∂

------------------- ∇ Bρψv( ) ∇ Bj( )⋅+⋅+ Bρf jψ
top jψ

bottom–+=

ψ

jψ
top 1

δS
------ ntop j ρψ w v–( )+[ ]⋅ Sd

δStop
∫=

jψ
bottom 1

δS
------ nbottom j ρψ w v–( )+[ ]⋅ Sd

δSbottom
∫=









B
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procedures referred to the representative elementary
volume (REV) composed by fluid and solid phases. It
results finally to the form C of the basic balance
statement3

(9-4)

where an exchange term at the fluid-solid interface nat-
urally results

(9-5)

Notice, the balance quantities of the porous medium
conservation equation (9-4) are averaged over the REV
volume.

Finally, the porous medium equation (9-4) can also
be vertically integrated over the depth , which yields
form D of the basic balance statement as

(9-6)

It is obvious, the balance statement (9-6) of form D is
the most general form which encompasses all other
forms when we specify the porosity  as

(9-7)

the depth  as

(9-8)

the interface exchange term  as

(9-9)

and the top and bottom exchange terms  as

(9-10)

VKPKP j~íÜÉã~íáÅ~ä=ÅçåîÉåíáçåë

Both Cartesian and cylindrical coordinate systems
will be employed. They are defined as

(9-11)

The velocity vector  is accordingly

ερψ( )∂
t∂

------------------ ∇ ερψv( ) ∇ εj( )⋅+⋅+ ερf jψ
interface+=

jψ
interface 1

δS
------ ninterface j ρψ w v–( )+[ ]⋅ Sd

δSinterface
∫=

B

Bερψ( )∂
t∂

---------------------- ∇ Bερψv( ) ∇ Bεj( )⋅+⋅+

Bερf jψ
interface jψ

top jψ
bottom–+ +

=

ε

ε
 1≡
 1<




= for free fluid flow
porous media flow

B

B  1≡
arbitrary




= for non-integrated form
vertically integrated form

jψ
interface

jψ
interface  0≡

 0≠



= for free fluid flow
porous media flow

jψ
top jψ

bottom,

jψ
top jψ

bottom,( )
 0≡
 0≠




= for non-integrated form
vertically integrated form

x

x y z, ,
x y,
x

r ω z, , 







for

3D
2D
1D
axisymmetry
















=

v
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(9-12)

The scalar product  is given by

(9-13)

and the derivative operation  for the different coor-
dinate systems is given, for instance, for the variable 
as

(9-14)

VKPKQ dê~îáíó=~åÇ=î~êá~ÄäÉë

In the following we assume an exclusive action of
gravity in the form

(9-15)

As a further useful variable the hydraulic head  (pie-
zometric head) related to the reference fluid density 
is defined

(9-16)

and

(9-17)

Thus,

v

u
v
w

vr

vω

vz













= for

Cartesian coordinates
 
 
 
cylindrical coordinates

∇ v⋅

∇ v⋅( )

∂u
∂x
------ ∂v

∂y
----- ∂w

∂z
-------+ +

∂u
∂x
------ ∂v

∂y
-----+

∂u
∂x
------

1
r
---

∂ rvr( )
∂r

--------------- 1
r
---

∂vω
∂ω
---------

∂vz
∂z
--------+ +















=

3D (x y z) Cartesian, ,
 
2D (x y) Cartesian,
 
1D (x) Cartesian
 
cylindrical (r ω z), ,

∇2

ψ

∇2ψ( )

∂2ψ

∂x2
---------- ∂2ψ

∂y2
---------- ∂2ψ

∂z2
----------+ +

∂2ψ

∂x2
---------- ∂2ψ

∂y2
----------+

∂2ψ

∂x2
----------

1
r
--- ∂

∂r
----- r∂ψ

∂r
------- 

  1
r2
----∂2ψ

∂ω2
---------- ∂2ψ

∂z2
----------+ +

















=

3D (x y z) Cartesian, ,

 
2D (x y) Cartesian,

 

1D (x) Cartesian
 

cylindrical (r ω z), ,

g ge–= g
gx

gy

gz

= e
ex

ey

ez

=

h
ρo

h φ z+ p
ρog
--------- z+= =

p ρog h z–( )=
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(9-18)

VKPKR eóÇê~ìäáÅ=ê~Çáìë

The hydraulic radius is defined as the flow cross-
sectional area divided by the wetted perimeter

(9-19)

Table 9.3 lists the hydraulic radii for interesting cases.

VKPKS cêÉÉ= EéÜêÉ~íáÅF= ëìêÑ~ÅÉ= ÅçåÇáJ
íáçå

A phreatic surface represents a macroscopic moving
material interface between two fluids, e.g. air and
water. A material surface  is governed
by the kinematic equation

(9-20)

The outward unit vector normal to  is defined as

(9-21)
and accordingly

(9-22)

∇p ρg– ∇p ρge+ ρog ∇φ ∇z
ρ ρo–

ρo
---------------e+ + 

 

ρog ∇h
ρ ρo–

ρo
---------------e+ 

  ρog ∇h Θe+( )

= =

= =

rhydr
flow area

wetted perimeter
----------------------------------------=

F F x t,( ) 0= =

∂F
∂t
------ w F∇⋅+ 0=

F

n F∇
F∇

------------=

Table 9.3 Hydraulic radii for different applications

Type

A
submerged rectangular cross-

section

B
submerged slit plane

C
open rectangular cross-section

D
open wide channel (b > 20B)

plane

E
submerged circular cross-section

rhydr

B

b

Bb
2 b B+( )
---------------------

b

B
bB
2B
------- b

2
---=

B

b

Bb
b 2B+
----------------

B

b
B

1 2B b⁄+
----------------------- B≈

R

πR2

2πR
---------- R

2
---=

w n⋅  ∂F ∂t⁄
F∇

---------------–=
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where  denotes the magnitude of the vector .
For the vertical integration along the thickness  we
can express the geometries of the top and bottom sur-
faces in the forms (Fig. 9.2)

(9-23)

and

(9-24)

For a free surface the top elevation  is
identical to the hydraulic head . Accord-
ingly, the thickness is given by

(9-25)

If the bottom geometry is stationary the storage term in
(9-6) becomes

(9-26)

VKPKT sáëÅçìë=ëíêÉëëÉë=çå=ëìêÑ~ÅÉë

The viscous stresses on a surface  (note  can
indicate a top and bottom surface as well as a fluid-
solid interface) result from exchange relationships (9-
3) and (9-5) if replacing the general flux vector  by
the viscous stress tensor of fluid  (cf. Table 9.2), viz.,

(9-27)

Here  stands for the stress on the surface  with nor-
mal . It represents a surface force per unit area
depending on the orientation of the surface10. For
instance, let us consider the stress components on a pla-
nar top surface as illustrated in Fig. 9.3. Assuming
additionally a rigid and impermeable surface
( ) with a constant stress property on the unit
area  the surface stresses are explicitly given by

(9-28)

With  the stress components become

(9-29)

F∇ ∇F
B

Ftop     Ftop x t,( )≡ z btop x y t, ,( )   – 0= =

Fbottom Fbottom x t,( )≡ z bbottom x y t, ,( )– 0= = 



B B x t,( ) btop x y t, ,( ) bbottom x y t, ,( )–= =

Figure 9.2 Surface conditions.

x

z

B (x,y,t)

y

Ftop 0=

Fbottom 0=

bbottom x y t, ,( ) btop x y t, ,( )

n

h

datum level

z btop x y t, ,( )=
h h x y t, ,( )=

B h bbottom–=

Bερψ( )∂
t∂

---------------------- B∂ ερψ( )
∂t

------------------ ερψ∂h
∂t
------+=

ν ν

j
σ

σν 1
δS
------ nν σ ρv w v–( )+[ ]⋅ Sd

δSν
∫=

σν ν
nν

w v 0≈=
δS

σtop ntop σ⋅≈

ntop 0 1 0, ,( )=

σx
top 0σxx 1σyx 0σzx+ + σyx= =

σy
top 0σxy 1σyy 0σzy+ + σyy= =

σz
top 0σxz 1σyz 0σzz+ + σyz= = 
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VKQ _~ëáÅ=_~ä~åÅÉ=bèì~íáçåë

VKQKN cäìáÇ=ã~ëë=ÅçåëÉêî~íáçå

The fluid mass conservation is described by speci-
fying Eq. (9-6) with Table 9.2 as

(9-30)

which can be employed for all flow problems under
discussion when setting  and  appropriately. Notice,
the sink/source term  includes both interfacial and
surfacial flux conditions (cf., Eq. (9-5)).
The storage term in (9-30)

(9-31)

can be expanded with regard to the hydraulic head 
and one gets with (9-26)

(9-32)

where the compressibility  and storativity  are
introduced as

(9-33)

Notice, for a free fluid we have to set  and
.

Neglecting the density effects in the divergence term of
(9-30) by applying the Boussinesq approximation2 the
fluid mass balance equation (9-30) yields

(9-34)

VKQKO cäìáÇ=ãçãÉåíìã=ÅçåëÉêî~íáçå

The fluid momentum conservation is specified from
Eq. (9-6) with Table 9.2 as

(9-35)

where the stress tensor is splitted into the equilibrium
(pressure) and non-equilibrium (deviatory) parts as

(9-36)

Figure 9.3 Surface forces related to components of
the viscous stress tensor .σ

x
z

y

ntop
0
1
0

=

σy
top σyy=

σz
top σyz=

σx
top σyx=

t∂
∂ ερB( ) ∇ ερBv( )⋅+ ερBQρ=

ε B
Qρ

t∂
∂ ερB( ) εB∂ρ

∂t
------ ρB∂ε

∂t
----- ερ∂B

∂t
------+ +=

h

t∂
∂ ερB( ) ρ BSo Ss+( )∂h

∂t
------=

So Ss

So εγ 1 ε–( )κ+=

Ss ε= 



ε 1=
So γ=

S∂h
∂t
------ ∇ εBv( )⋅+ εBQρ=

S BSo Ss+( )= 





∂
∂t
---- ερBv( ) ∇ ερBvv( )⋅+ ∇ εBp( )–

∇ εBσ'( ) ερBg+⋅ εB σinterface σtop σbottom–+( )+ +

=

σ pI– σ'+=
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Notice, in Eq. (9-35) the exchange term 
vanishes for free fluid motion and the terms

 are dropped if the equation is not vertically
integrated.
In the following we assume the Newton’s viscosity law
(including the Stokes’s assumption10) which is written
in the form

(9-37)

with the strain-rate tensor

(9-38)

For an incompressible fluid with a divergenceless (so-
called solenoidal) velocity  the momentum
equation (9-35) leads to the well-known Navier-Stokes
equation

(9-39)

from where specific forms can be derived as follows.

VKQKOKN a~êÅó=Ñäçï=áå=éçêçìë=ãÉÇá~

Commonly, in a porous medium the velocity  is
sufficiently small, that means the Reynolds number
based on a typical pore diameter is of order unity or
smaller. As the result, the inertial effects in the momen-
tum equation (9-39) can be neglected

(9-40)

As the result, one yields a general momentum equation
for porous media (we consider the non-integrated form
with ) as

(9-41)

Furthermore, the drag forces due to fluid viscosity can
usually be dropped  with respect to the drag
term of momentum exchange  at interfaces of
phases. The interfacial drag term of momentum
exchange  can be derived as a linear friction
relationship of the form3

(9-42)

where the permeability  represents an inverse friction
tensor due to the viscous drag at the interfaces of fluid-
solid phases.
Finally, the momentum equation (9-41) reduces to the
well-known Darcy equation of the form

(9-43a)

or with (9-18)

(9-43b)

σinterface

σtop σbottom,

σ' 2µ d 1
3
--- ∇ v⋅( )I–=

d 1
2
--- ∇v ∇v( )T+[ ]=

∇ v⋅ 0=

ερB∂v
∂t
----- ερBv ∇⋅( )v+ εB ∇p ρg–( ) εBµ∇2v

εB σinterface σtop σbottom–+( )

+

+

–=

v

∂v
∂t
----- 0≈ v ∇⋅( )v 0≈

B 1 σtop,≡ σbottom 0= =

ε ∇p ρg–( ) εσinterface εµ∇2v+=

µ∇2v 0≈
σinterface

σinterface

σinterface  µk 1– εv( )⋅–=

k

v  k
εµ
------ ∇p ρg–( )–=

εv  Kfµ ∇h Θe+( )–=

K
kρog

µo
------------=

fµ
µo
µ
------=
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valid for flow in a porous medium.

VKQKOKO mä~åÉ=~åÇ=~ñáëóããÉíêáÅ=é~ê~ääÉä=
EmçáëÉìáääÉF=Ñäçï

A flow is called parallel when inertial terms of the
Navier-Stokes equation (9-39) vanishes. That means, a
fluid particle is subjected to zero acceleration, accord-
ingly, it moves in pure translation with constant veloc-
ity. It follows that pathlines must be straight lines and
that the velocity of each particle may depend only on
coordinates perpendicular to the direction of flow. Such
flow fields occur between two parallel plates or in a
circular tube as depicted in Fig. 9.4.

For 2D parallel laminar flow (Fig. 9.4a) we have

(9-44)

and the momentum equation (9-39) in the x-direction
becomes (we consider the free fluid case with no verti-
cal integration)

(9-45)

Integrating (9-45) with the boundary conditions
 it yields

(9-46)

and we obtain the average velocity in the aperture  as

(9-47)

and the discharge 

(9-48)

which is called the cubic law of the Hagen-Poiseuille
flow. The relationships (9-47) can be expressed by the
hydraulic radius  if replacing the dimension 
for the slit flow according to Table 9.3 (type B)

(9-49)

Similarly, for the axisymmetric flow in a circular tube
(Fig. 9.4b) with

Figure 9.4 a) 2D plane and b) axisymmetric Poiseuille
flow.

x

y

b

u z

r

vz

R

a) b)

v
u
v
w

= u u y( )= v w 0= =

dp
dx
------ ρgx– µd2u

dy2
--------=

u 0( ) u b( ) 0= =

u  1
2µ
------ dp

dx
------ ρgx– 

  y b y–( )–=

b

u 1
b
--- u yd

y 0=

b

∫  b2

12µ
---------–= = dp

dx
------ ρgx– 

 

Q

Q ub  b3

12µ
--------- dp

dx
------ ρgx– 

 –= =

rhydr b 2⁄

u  
rhydr

2

3µ
----------- dp

dx
------ ρgx– 

 –=
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(9-50)

one solves in the z-direction the momentum equation

(9-51)

With  at  and  the integra-
tion of (9-51) gives

(9-52)

Then, the average velocity for the Hagen-Poiseuille
flow in a circular tube becomes

(9-53)

and we get for the discharge through the tube

(9-54)

The relationships (9-53) can be expressed by the
hydraulic radius  if replacing the dimension 
for the tube flow according to Table 9.3 (type E)

(9-55)

As seen the Hagen-Poiseuille’s laws of laminar fluid
motion for 1D and 2D plane flow (9-47) and for axi-
symmetric flow (9-53) represent linear relationships
with respect to the pressure gradient and gravity

. In a generalized form one yields finally
with (9-18)

(9-56)

VKQKOKP i~ïë=çÑ=ÑäìáÇ=ãçíáçå=Ñçê=çîÉêä~åÇ=
~åÇ=ÅÜ~ååÉä=Ñäçï

Basically, the fluid motion for overland and channel
flow is described by the vertically integrated Navier-
Stokes equation (9-39) according to

(9-57)

which is a formulation of the well-known De Saint-
Venant equations1. Over a wide range of practical over-
land and channel flow (Fig. 9.5) at low-to-moderate
velocity/flow regimes the inertial terms in the govern-
ing momentum balance equation (9-35) can be ignored
compared with the gravitational terms, friction and
pressure effects. Furthermore, the interior viscous
effects can be neglected over the shear stress effects at
the surfaces1,9. Assuming this,

v
vr

vω

vz

= vz vz r( )= vr vω 0= =

dp
dz
------ ρgz– µ

r
--- ∂

∂r
----- r

∂vz
∂r
-------- 

 =

dvz dr⁄ 0= r 0= vz R( ) 0=

vz  1
4µ
------ dp

dz
------ ρgz– 

  R2 r2–( )–=

vz
1

πR2
--------- vzr rd ωd

r 0=

R

∫
ω 0   =

2π

∫  R2

8µ
------ dp

dz
------ ρgz– 

 –= =

Q πR2vz  πR4

8µ
--------- dp

dz
------ ρgz– 

 –= =

rhydr R 2⁄

vz  
rhydr

2

2µ
----------- dp

dz
------ ρgz– 

 –=

∇p ρg–( )

v  Kfµ ∇h Θe+( )–=

K
rhydr

2 ρog
aµo

--------------------I       with=
rhydr b 2 a,⁄ 3   for   1D/2D plane= =

rhydr R 2 a,⁄ 2   for   axisymmetry= =



ρB∂v
∂t
----- ρBv ∇⋅( )v+ B ∇p ρg–( )

Bµ∇2v B σtop σbottom–( )+ +

–=
cbcilt=ö=NRV
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(9-58)

the momentum equation (9-57) reduces to

(9-59)

The shear effect  at the top (free) surface can be
caused by wind stress. For the present application we
neglect influences caused by wind stress:

(9-60)

On the other hand, the shear effect at the bottom can be
expressed by a friction slope relationship of the form

(9-61)

representing friction laws, where ,  is a
friction factor and  is a constant. As the result, the

following momentum equation can be derived

(9-62)

where different specific laws for the friction slopes 
can be specified as summarized in Table 9.4 for isotro-
pic roughness coefficients.

Instead of using the pressure  as primary variable
the hydraulic head  or the local water depth  (cf.
Eqs. (9-16) and (9-18)) are alternative formulations of
(9-62), viz.,

(9-63a)

and

∂v
∂t
----- 0≈ v ∇⋅( )v 0≈ µ∇2v 0≈

∇p ρg–( ) σtop– σbottom+ 0=

Figure 9.5 Open channel flow.

z

x,y

v h σ top wind stress

σ bottom slope friction

datum level

φ
g

σtop

σtop 0≈

σbottom ρog v v

τ2rhydr
α

-------------------=

v v v⋅= τ
α 1≥

Table 9.4 Various friction laws

Law

Newton-Taylor 1

Chezy 1

Manning-Strickler

∇p ρg–( ) ρogSf+ 0=

Sf
v v

τ2rhydr
α

----------------=






Sf

τ α Sf

g
ϒ
--- ϒ v v

grhydr
--------------

C v v
C2rhydr

------------------

M 4 3⁄ v v
M2rhydr

4 3⁄
-------------------

p
h φ

ρog ∇h Sf Θe+ +( ) 0=
NSM=ö=tÜáíÉ=m~éÉêë=J=sçäK=f
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(9-63b)

where fluid density effects are included in the -
term.

Equation (9-63a) can be used to derive a diffusion-
type flow equation7,9. Since, exemplified for 2D

(9-64)

and with (9-62)

(9-65)

we find with (9-63a): ,

(9-66)

or more general

(9-67)

It can be easily shown that the velocity  in the rela-
tionship (9-67) tends to zero if the gradient  van-
ishes (provided that )

(9-68)

VKQKP `çåí~ãáå~åí= ã~ëë= ÅçåëÉêî~J
íáçå

The balance equation for a contaminant mass results
from Eq. (9-6) and Table 9.2 in form of

(9-69)

which can be employed for all the interesting mass
transport problems when specifying  and  appropri-
ately. Notice, the reaction term  includes both inter-
facial and surfacial mass transfer conditions (cf., Eq.
(9-5)).

The reaction term can be splitted into a first-order
reaction rate and a zero-order production term2, respec-
tively,

(9-70)

The mass flux  is expressed by the Fickian law in
form of

(9-71)

ρog ∇φ Sf So– Θe+ +( ) 0=

So ∇z–= 



Θe

v 2 u2 v2+ τ2rhydr
α Sfx

2 Sfy
2+= =

Sfx
u2 v2+

τ2rhydr
α

---------------------u= Sfy
u2 v2+

τ2rhydr
α

---------------------v=

Sfx ∂h ∂x Θex+⁄( )–=
Sfy ∂h ∂y Θey+⁄( )–=

u  
τrhydr

α 2⁄

∂h
∂x
------ 

  2 ∂h
∂y
------ 

  2
+4

---------------------------------------- ∂h
∂x
------ Θex+ 

 –=

v  
τrhydr

α 2⁄

∂h
∂x
------ 

  2 ∂h
∂y
------ 

  2
+4

---------------------------------------- ∂h
∂y
------ Θey+ 

 –=

v  K ∇h Θe+( )–=

K
τrhydr

α 2⁄

∇h 24
-------------------I=







v
∇h

Θ 0≈

v
∇h 0→

lim  
τrhydr

α 2⁄

∇h 24
-------------------I ∇h

∇h 0→
lim– 0= =

BεC( )∂
t∂

------------------ ∇ BεCv( ) ∇ Bεjc( )⋅+⋅+ Bεrc=

ε B
rc

rc ϑC– Qc+=

jc

jc D C∇⋅–=

D DdI Dm+= 
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The hydrodynamic dispersion tensor  consists of the
molecular diffusion part  and the mechanical dis-
persion part . In a porous medium  is commonly
described by the Scheidegger-Bear dispersion relation-
ship as

(9-72)

In a free fluid flow there is a large variety for  in
dependence on laminar and turbulent flow conditions.
For instance, in a fluid-filled tube under laminar flow
conditions  can by estimated by Taylor’s analysis11

(9-73)

Using the Fickian law (9-71) and incorporating the
continuity equation (9-30) Eq. (9-69) yields2

(9-74)

Considering additionally sorption effects in the porous
medium the following contaminant mass transport
equation can be derived on the basis of Eq. (9-74)2

(9-75)

with the retardation relationships

(9-76)

in which the sorption function  can be specified
for Henry, Freundlich or Langmuir isotherms2.

VKQKQ båÉêÖó=ÅçåëÉêî~íáçå

The energy balance equation is derived basically from
Eq. (9-6) and Table 9.2 under the assumption of a ther-
mal equilibrium between fluid (f) and solid (s) phases.
We obtain finally2

(9-77)

which can be applied to all the interesting heat trans-
port problems when specifying  and  appropriately.
Notice, the thermal sink/source terms  include
both interfacial and surfacial heat transfer conditions
(cf., Eq. (9-5)).

Using the state relation for the internal energy2

(9-78)

and the Fourierian heat flux as

D
DdI

Dm Dm

Dm βT v( )I βL βT–( )v v⊗
v

------------+=

Dm

Dm

Dm
R2 v
48Dd
-------------

 
 
  v v⊗

v
------------=

εB∂C
∂t
------- εBv ∇⋅ C ∇ BεD ∇C⋅( )

Bε Qρ ϑ+( )C+

⋅–+

BεQc=

Bℜd
∂C
∂t
------- εBv ∇⋅ C ∇ BεD ∇C⋅( )

B εQρ ℜϑ+( )C+

⋅–+

BεQc=

ℜ ε 1 ε–( )χ C( )+=

ℜd ε 1 ε–( )
Cd
d χ C( ) C⋅[ ]+=







χ C( )

∂
∂t
---- B ερfEf 1 ε–( )+ ρsEs[ ]{ } ∇ BερfEfv( )

∇ BjT( )⋅+

⋅+

B ερfQT
f 1 ε–( )ρsQT

s+[ ]=

ε B
QT

f QT
s

,

dEα cαdT= for α s f,=
NSO=ö=tÜáíÉ=m~éÉêë=J=sçäK=f
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(9-79)

 
one yields the following balance equation for the ther-
mal energy2

(9-80)

to be solved for the system temperature .

VKR dÉåÉê~äáòÉÇ= jçÇÉä= bèì~J
íáçåë

VKRKN cäçï

The fundamental flow equation represents a combi-
nation of the fluid mass conservation equation (9-34)
and the fluid momentum conservations for porous
media (9-43b), Poiseuille flow (9-56) and overland/
channel flow (9-67). As the result, Table 9.5 summa-
rizes the governing equation for the used discrete fea-
ture elements for 1D, 2D and 3D in dependence on the
problem cases under consideration. For the Poiseuille
flow and overland/channel flow standard geometric
forms of the fractures are implemented in FEFLOW.
Different geometries can be input by means of correc-
tions in the corresponding hydraulic parameters as
thoroughly described in Appendix D.

VKRKO `çåí~ãáå~åí=ã~ëë

The governing contaminant mass transport equation
(9-75) can now be specified for the different flow con-
ditions and discrete feature elements. Table 9.6 summa-
rizes the different terms and expressions for both
porous media and free fluid conditions.

VKRKP eÉ~í

The specified terms for the governing heat transport
equation (9-80) are summarized in Table 9.7 for both
porous media and free fluid conditions.

jT Λ T∇⋅–=

Λ Λcond Λdisp+ ελf 1 ε–( )λs+[ ]I ερ+
f
cfDm= =







B ερfcf 1 ε–( )+ ρscs[ ]{ }∂T
∂t
------ ερfcfBv T∇⋅+

∇ BΛ ∇T⋅( ) BερfcfQρ T To–( )+⋅–
 

B ερfQT
f 1 ε–( )ρsQT

s+[ ]=

T
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Table 9.5 Flow model equations

Case Darcy Poiseuille Overland Darcy Poiseuille Overland Darcy Poiseuille Overland

1DPP
(1D plane 
phreatic)

1DPN
(1D plane non-

phreatic)

1DAP
(1D axisym-

metric phreatic)

1DAN
(1D axisym-
metric non-

phreatic)

2DPP
(2D plane 
phreatic)

2DPN
(2D plane non-

phreatic)

3DP
(3D phreatic 

and non-
phreatic)

L h( ) S∂h
∂t
------ ∇ KfµB ∇h Θe+( )⋅( ) Q–⋅– 0= =

S KfµB Q

b BSo Ss+( ) b Bγ 1+( ) b Bγ 1+( )
bB kρog

µo
------------

K

fµ

  

bB rhydr
2 ρogI

3µo
-----------------------

K

fµ

    

bB τrhydr
α 2⁄ I

∇h 24
-------------------

K

fµ

    

bBεQρ bBQρ bBQρ

bBSo bBγ bBγ bB kρog
µo

------------

K

fµ

  

bB rhydr
2 ρogI

3µo
-----------------------

K

fµ

    

bB τrhydr
α 2⁄ I

∇h 24
-------------------

K

fµ

    

bBεQρ bBQρ bBQρ

πR2 So
Ss
B
----+ 

  πR2 γ 1
B
---+ 

  πR2 γ 1
B
---+ 

  πR2 kρog
µo

------------ fµ

K

  

πR2 rhydr
2 ρogI

2µo
-----------------------

K

fµ

    

πR2 τrhydr
α 2⁄ I

∇h 24
-------------------

K

fµ

    

πR2εQρ πR2Qρ πR2Qρ

πR2So πR2γ πR2γ πR2 kρog
µo

------------

K

fµ
  

πR2 rhydr
2 ρogI

2µo
-----------------------

K

fµ

    

πR2 τrhydr
α 2⁄ I

∇h 24
-------------------

K

fµ

    

πR2εQρ πR2Qρ πR2Qρ

BSo Ss+ Bγ 1+ Bγ 1+
B kρog

µo
------------

K

fµ

  

B rhydr
2 ρogI

3µo
-----------------------

K

fµ
    

B τrhydr
α 2⁄ I

∇h 24
-------------------

K

fµ

    

BεQρ BQρ BQρ

BSo Bγ Bγ
B kρog

µo
------------

K

fµ

  

B rhydr
2 ρogI

3µo
-----------------------

K

fµ

    

B τrhydr
α 2⁄ I

∇h 24
-------------------

K

fµ

    

BεQρ BQρ BQρ

So γ γ
kρog

µo
------------

K

fµ

  

rhydr
2 ρogI

3µo
-----------------------

K

fµ

    

τrhydr
α 2⁄ I

∇h 24
-------------------

K

fµ

    
εQρ Qρ Qρ
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Table 9.6 Contaminant mass transport model equations

Case porous free 
fluid porous free 

fluid porous free fluid porous free fluid porous free 
fluid

1DPP
(1D plane phreatic 
and non-phreatic)

1DAP
(1D axisymmetric 

phreatic and
non-phreatic)

2DPP
(2D plane phreatic 
and non-phreatic)

3DP
(3D phreatic and 

non-phreatic)

L C( ) S∂C
∂t
------- q C∇⋅ ∇ BεD ∇C⋅( ) ΦC Q–+⋅–+ 0= =

S q BεD Φ Q

bBℜd bB bBεv bBv bBε DdI Dm+( ) bB DdI Dm+( ) bB εQρ ℜϑ+( ) bB Qρ ϑ+( ) bBεQc bBQc

πR2ℜd πR2 πR2εv πR2v πR2ε DdI Dm+( ) πR2 DdI Dm+( ) πR2 εQρ ℜϑ+( ) πR2 Qρ ϑ+( ) πR2εQc πR2Qc

Bℜd B Bεv Bv Bε DdI Dm+( ) B DdI Dm+( ) B εQρ ℜϑ+( ) B Qρ ϑ+( ) BεQc BQc

ℜd 1 εv v ε DdI Dm+( ) DdI Dm+ εQρ ℜϑ+ Qρ ϑ+ εQc Qc
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Table 9.7 Heat transport model equations

Case porous free fluid porous free fluid porous free fluid porous free fluid porous free 
fluid

1DPP
(1D plane 

phreatic and 
non-phreatic)

1DAP
(1D axisym-

metric phreatic 
and

non-phreatic)

2DPP
(2D plane 

phreatic and 
non-phreatic)

3DP
(3D phreatic 

and non-
phreatic)

L T( ) S∂T
∂t
------ q T∇⋅ ∇ BΛ ∇T⋅( ) Φ T To–( ) Q–+⋅–+ 0= =

S q BΛ Φ Q

bB ερfcf  +[

1 ε–( )ρscs ]
bBρfcf bBερfcfv bBρfcfv bB ελf  +[{

1 ε–( )λs ]I  +

ερfcfDm }

bB λ( fI  +

ρfcfDm )
bBερfcfQρ bBρfcfQρ

bB ερfQT
f  +[

1 ε–( )ρsQT
s

]
bBρfQT

f

πR2 ερfcf  +[

1 ε–( )ρscs ]
πR2ρfcf πR2ερfcfv πR2ρfcfv πR2 ελf  +[{

1 ε–( )λs ]I  +

ερfcfDm }

πR2 λ( fI  +

ρfcfDm )
πR2ερfcfQρ πR2ρfcfQρ

πR2 ερfQT
f  +[

1 ε–( )ρsQT
s

]
πR2ρfQT

f

B ερfcf  +[

1 ε–( )ρscs ]
Bρfcf Bερfcfv Bρfcfv B ελf  +[{

1 ε–( )λs ]I  +

ερfcfDm }

B λ( fI  +

ρfcfDm )
BερfcfQρ BρfcfQρ

B ερfQT
f  +[

1 ε–( )ρsQT
s

]
BρfQT

f

ερfcf  +

1 ε–( )ρscs
ρfcf ερfcfv ρfcfv

ελf  +[

1 ε–( )λs ]I  +

ερfcfDm

λfI ρfcfDm+ ερfcfQρ ρfcfQρ
ερfQT

f  +

1 ε–( )ρsQT
s

ρfQT
f
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VKS cáåáíÉ= bäÉãÉåí= cçêãìä~J
íáçåë

VKSKN j~ëíÉê= Éèì~íáçåI= ÄçìåÇ~êó
ÅçåÇáíáçåë=~åÇ=ïÉ~â=ëí~íÉãÉåí

The governing balance equations as listed in Tables
9.5, 9.6 and 9.7 can be generalized by the following
master equation

(9-81)

which has to be solved for flow ( ), contaminant
mass ( ) and heat ( ) for 1D, 2D and 3D
discrete feature elements.

Let  and  be the spatial and temporal
domain, respectively, where  is the number of space
dimension (1, 2 or 3) and  is the final time, and let

 denote the boundary of , where 
and  are two disjoint portions of the total boundary,

, the following boundary conditions (B.C.’s) have
to be appended to (9-81):

(9-82)

where on  we have Dirichlet BC and on  it repre-
sents a more general form of a Robin type BC in which
more specific Neumann and Cauchy type BC’s are
involved. If  a Neumann BC of 2nd kind results,
while for  a common Cauchy BC of 3rd kind is

given. In (9-82)  corresponds to the normal unit vec-
tor (positive outward),  and  are prescribed
boundary values of  on  and , respectively.

The finite element formulation is based on the weak
form of the basic equation (9-81). Introducing a spatial
weighting function  we get

(9-83)

Applying partial integration and the divergence theo-
rem (Green’s theorem) to the weak statement (9-83)
and inserting the Robin-type BC (9-82) the following
weak form for the finite element method finally results

(9-84)

VKSKO pé~íá~ä=ÇáëÅêÉíáò~íáçå

In the finite element context a spatial semi-discreti-
zation  of the continuum domain  is achieved by
the union of a set of non-overlapping subdomains ,
the finite elements, as

(9-85)

On any finite-element domain , the unknown vari-

L ψ( ) S∂ψ
∂t
------- q ψ∇⋅ ∇ D ∇ψ⋅( ) Qψ–⋅–+ 0= =

Qψ Φψ– Q+=

ψ h=
ψ C= ψ T=

Ω RD⊂ 0 Tt,( )
D

Tt
∂Ω Γ1 Γ2⊗= Ω Γ1

Γ2
∂Ω

ψ ψ1    on    Γ1=

n– D ∇ψ⋅( ) a ψ2 ψ–( )+⋅ b      on    Γ2= 



Γ1 Γ2

a 0=
b 0=

n
ψ1 ψ2

ψ Γ1 Γ2

w

w S ψ∂
t∂

------- q ∇ψ⋅+ 
  Ωd

Ω
∫

w ∇ D ∇ψ⋅( ) Qψ+⋅[ ] Ωd
Ω
∫=

w S ψ∂
t∂

------- q ∇ψ⋅+ 
  ∇w D ∇ψ⋅( )⋅+ Ωd

waψ
Γ2

∫+ Γd

Ω
∫

wQψ Ωd w aψ2 b–( ) Γd
Γ2

∫+
Ω
∫=

Ωh Ω
Ωe

Ω Ωh Ωe

e
∪≡≈

Ωe
cbcilt=ö=NST



VK= aáëÅêÉíÉ= ÑÉ~íìêÉ=ãçÇÉäáåÖ= çÑ= ÑäçïI=ã~ëë= ~åÇ= ÜÉ~í= íê~åëéçêí= éêçÅÉëëÉë= Äó= ìëáåÖ

cbcilt

able  (and dependent coefficients) are replaced by a
continuous approximation that assumes the separability
of space and time, thus

(9-86)

where  designates nodal indices, M is the
total number of nodes,  is the nodal basis function,
called the trial space, and  are the spatial coordinates
(9-11). Note that the summation convention is used for
repeated indices. For the present analysis the basis
functions  are based on  (continuous) piece-wise
polynomials that are piecewise-continuously differen-

tiable and square integrable (but whose second and
higher derivatives need not to exist).

Using the Galerkin-based finite element method
where the test function  becomes identical to the trial
space , Eq. (9-84) leads to the following global
matrix system of M equations

(9-87)

with its components written in indicial notation

where the subscripts  denote nodal indi-
ces. The superposed dot in (9-87) means differentiation
with respect to time , viz.,

(9-89)

VKSKP qÉãéçê~ä=ÇáëÅêÉíáò~íáçå

The spatially discretized equation (9-87) as a com-
mon first-order differential equation in time can practi-

cally only solved by numerical schemes. For stability
reasons implicit (A-stable) two-step techniques are pre-
ferred.

Considering  within the finite interval
, where the subscript n denotes the time

plane and  is a variable time step length, the func-
tion  is defined as

(9-90)

ψ

ψ x t,( ) ψh x t,( )≈ Ni x( )ψi t( )=

i 1 … M, ,=
Ni

x

Ni C0

w
N

O ψ·⋅ K ψ⋅ F–+ 0=

(9-88)

Oij Oij
e

e
∑ SNiNj Ωd

Ωe
∫

e
∑= =

Kij Kij
e

e
∑ Niq Nj∇⋅ Ni∇ D Nj∇⋅( )⋅ ΦNiNj+ +( ) Ωd aNiNj Γd

Γ2
e
∫+

Ωe
∫

e
∑= =

Fi Fi
e

e
∑ NiQ Ωd Ni aψ2 b–( ) Γd

Γ2
e
∫+

Ωe
∫

e
∑= =















i j, 1 … M, ,=

t

ψ· t( ) d
dt
-----ψ t( )

 
 
 

=
ψ t( )

tn tn ∆tn+,( )
∆tn

ψ t( )

ψn ψ tn( )=
NSU=ö=tÜáíÉ=m~éÉêë=J=sçäK=f
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at the previous (old) time plane and as

(9-91)

at the new time plane.

VKSKPKN JjÉíÜçÇ

Introducing a weighting coefficient , we
can write

(9-92)

Using a backward difference approximation for
 and a forward difference for  one

obtains

(9-93)

Common time stepping schemes result if choosing  in
an appropriate manner, viz.,

(9-94)

Inserting (9-92) into (9-87) the following matrix equa-
tion finally results

(9-95)

VKSKPKO mêÉÇáÅíçêJÅçêêÉÅíçê=ãÉíÜçÇ

The predictor-corrector method is thoroughly
described elsewhere3,4,5,6. For the present analysis the
fully implicit backward Euler (BE) scheme with a first-
order accuracy and the semi-implicit nondissipative
trapezoid rule (TR) with a second-order accuracy are
enforced. The time derivatives are approximated, for
the BE scheme, by

(9-96)

and for the TR scheme, by

. (9-97)

Inserting (9-96) and (9-97) into (9-87) results in

(9-98)

with  for the TR and BE scheme, respec-
tively.

ψn 1+ ψ tn ∆tn+( )=

θ

0 θ 1≤ ≤( )

ψ tn θ∆tn+( ) θψ tn ∆tn+( ) 1 θ–( )ψ tn( )+=

F tn θ∆tn+( ) θF tn ∆tn+( ) 1 θ–( )F tn( )+=

ψ· tn θ∆tn+( ) θψ· tn ∆tn+( ) 1 θ–( )ψ· tn( )+= 





ψ· tn ∆tn+( ) ψ· tn( )

ψ· tn θ∆tn+( ) ψn 1+ ψn–
∆tn

--------------------------=

θ

θ 0             explicit scheme=
θ 1 2        trapezoid rule (Crank-Nicolson scheme)⁄=
θ 1             implicit scheme= 






O
∆tn
-------- Kθ+ 

  ψn 1+ O
∆tn
-------- K 1 θ–( )– 

  ψn

Fn 1+ θ Fn 1 θ–( )+( )+

=

ψ· n 1+ ψn 1+ ψn–
∆tn

--------------------------=

ψ· n 1+ 2
∆tn
-------- ψn 1+ ψn–( ) ψ· n–=

O
θ∆tn
----------- K+ 

  ψn 1+ O ψn

θ∆tn
----------- 1

θ
--- 1– 

  ψ· n+ Fn 1++=

θ 1
2
--- 1,( )∈
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A fundamental aspect of the finite-element method
is the use of master elements where all element-data
inner products and integrations are performed in gener-

alized (local) coordinates (see Fig. 9.6). The coordinate
transformation (or mapping) that bridges a computa-
tional (transform) -space and the Euclidean space 
is

(9-99)

Based on (9-99) it is convenient to express the basis
functions  in local -coordinates for each element e,
viz.,

η RD

Figure 9.6 Finite elements with one-to-one mapping onto  (  = 1,2,3).RD D
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(9-100)

The mapping  is one-to-one and onto its range pro-
vided the transformation Jacobian  is nonsingular,
where in the  space

(9-101)

with according to (9-11). To evaluate
the flux vector divergence terms in (9-88) the inverse
Jacobian is required

(9-102)

where

with the determinant of 

Ni Ni x( ) Ni
e η( )

e
∪= =

x Nixi=

τe
J

R3
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∂
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∂
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x x1 x2 x3, ,( )=

Ni∇ J 1–

∂Ni
∂ξ
--------

∂Ni
∂η
--------

∂Ni
∂ζ
-------- 

 
 
 
 
 
 
 
 

=

(9-103)J 1– ∂η
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1
J
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J22J33 J32J23–( ) J13J32 J12J33–( ) J12J23 J13J22–( )
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The master element matrices appearing in (9-87) and
(9-88) are to be integrated over element volumes 
and surfaces . The integration in local coordinates
becomes for a ’volume’ element

(9-105)

and for an ’areal’ element in Cartesian coordinates of
 space:

(9-104)J

J11 J22J33 J32J23–( ) J21 J12J33 J13J32–( )– J31 J12J23 J13J22–( )+     in    R3

J11J22 J21J12–     in    R2

J11     in    R1








=

Ωe
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Ωd

x y zddd J ξ η ζddd=
dxdy J ξ ηdd=

dx J ξd= 
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(9-106)dΓ
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and in cylindrical coordinates of  (meridional) space

where . Commonly, for 2D and 3D element
entities the volume and area integrals are evaluated via

a Gaussian quadrature rule, e.g.,

where the  is the number of Gauss points,  are
weighting coefficients and the indices  indicate
the positions of the evaluation points in their local
coordinates . The functions  and in the inte-
grands are marked by an asterisk if the volume and sur-
face integrals are expressed in the -coordinates
according to (9-105),  and .

For 1D elements the integrals of (9-88) can easily
evaluated in a direct analytical manner so as shown in
Appendix B for a channel element with a linear basis
function .

VKSKR ^ëëÉãÄäó= çÑ= íÜÉ= ÇáÑÑÉêÉåí= ÑÉ~J
íìêÉ= ÉäÉãÉåíë= íç= íÜÉ= ÖäçÄ~ä= ëóëíÉã
ã~íêáñ

VKSKRKN kÉÉÇë=Ñçê=ÅççêÇáå~íÉ=íê~åëÑçêã~J
íáçå

The global matrix equations (9-87) written in the
form

R2

(9-107)dΓ
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r η ωdd 2π
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rdη 2π J21
2 J22

2+   rdη= =  at ξ 1±=















=

r Ni η( )ri=

(9-108)
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(9-109)

represent the standard discrete system resulting from
the summation (assembly) of the elemental (e) matrix
contributions. The integrals of the matrices and vectors

,  and  for each element e are performed in the
local coordinates  for the corresponding Euclidean
space  as stated above.

Under normal conditions 1D finite elements are
mapped to the  space, 2D elements to the  space
and 3D elements to the  space. In such case the map-
ping is strictly one-to-one, that means 3 global coordi-
nates  are transformed to 3 local coordinates

 in 3D, 2 global coordinates  to 2 local coor-
dinates  in 2D and 1 global coordinate  to 1 local
coordinate  in 1D. However, when 1D and 2D dis-
crete feature elements are generally mapped onto a 3D
global space, the number of local coordinates  will be
less than the number of global coordinates  and the
Jacobian  (9-101) will not be any more an invertible
square matrix (e.g., for the -system of a 2D fea-
ture element mapped into the global -system
the third row of  contains zeros,

, because the -coordinate does
not exist in 2D elements).

There is a simple way to overcome this mapping
conflicts. We take into consideration that all flow and

transport processes are invariant with respect to a rota-
tion (orthogonal transformation) of the global coordi-
nates . Accordingly, we can arbitrarily rotate  to the

-coordinates by using a suitable matrix of directional
cosines  as

(9-110)

Taking an appropriate rotation of the global -
coordinate system in such a way that the resulting local

-system becomes aligned to the orientation
of the 2D or 1D elements in the  space, there will be
no more an elemental contribution to the -direction
for 2D elements and elemental contributions to the -
and -directions for 1D elements (see Fig. 9.7). 

The advantages of this coordinate transformation
are that the corresponding Jacobian 

(9-111)

becomes again an invertible square matrix and the stan-
dard metric procedure can be maintained in the assem-
bly process for the global matrix system (9-109). To
ease the computations the -coordinate system
may, in fact, be different for every element e.

O ψ·⋅ K ψ⋅ F–+ 0=

O Oe

e
∑=

K Ke

e
∑=

F Fe

e
∑=
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--------=
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Since the rotation matrix  forms an orthonormal
basis we can transform between the - and the -sys-
tem according to

(9-112)

Figure 9.7 Global -coordinate system, rotated elemental -coordinate system and local -coor-
dinate system for 2D and 1D elements in the  space.
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where

(9-113)

is a diagonal directional cosines matrix built up of 
matrices in a number equal to that of the nodes in the
element e
and

(9-114)

are the transposes of matrices  and , respectively.

We can usually assume that any directional proper-
ties of the discrete system (9-109) are available in the
local -coordinates. Then, the local (elemental) sys-
tem matrix  is transformed into the global
matrix  according to

(9-115a)

with

(9-115b)

where  and  represent elemental ’flux’ compo-
nents for the local and the global coordinate system,
respectively. On inserting (9-112), (9-115a) and (9-
115b), using the same transformation rules for the stor-
age matrix  and assuming that in general the right-
hand side vector  can also be directionally dependent,
the global matrix system (9-109) yields finally the form

(9-116)

where the rotation matrix  is evaluated at element
level e. Practically,  is only required for mapping 2D
and 1D feature elements in the general  space, while
3D elements need not to rotate to the -system (the
rotation matrix becomes unity ) and can be
directly mapped onto the local -space via the Jaco-
bian  (9-101).

However, there are important special cases to be
considered here. Firstly, if the material properties of the
square matrices  and  are independent of the
coordinate directions (isotropic conditions) then we
have

Te
ae 0 0 …

0 ae 0  

0 0 ae  
…    
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(9-117)

because  due to the condition of orthogo-
nality and accordingly , .

Secondly, if the sink/source and boundary condition
terms incorporated in the right-hand side vector  rep-
resent direction-independent quantities so as occurred
in the balance equations summarized in Tables 9.5, 9.6
and 9.7, the vector  consists of nodal scalars and can
be directly evaluated (no rotation), viz.,

(9-118)

VKSKRKP aÉíÉêãáå~íáçå=çÑ=íÜÉ=ÇáêÉÅíáçå~ä=

ÅçëáåÉë= =çÑ=ÉäÉãÉåí=É

The directional cosines  are only required for
mapping 2D and 1D discrete feature elements in the 
space. If we commonly assume that the 3D continuum
domain  with its boundary  is completely filled
by 3D finite elements (e.g., hexahedral or pentahedral
isoparametric elements), the 2D fracture and 1D chan-
nel elements share the nodal points of the 3D mesh and
their geometric extents are aligned to surfaces, edges or
diagonals of the 3D matrix elements (Fig. 9.8).

For 2D fracture elements  forming sur-
faces of the 3D matrix element it is convenient to
derive the directional cosines directly from the shape of
the 3D element. We can construct the 2 directional vec-

tors  and  (Fig. 9.8), which are parallel to the
local - and -axes, respectively. They can be found
by the following shape-derived relationships

(9-119)
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u1

u2

x

z
y
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Figure 9.8 Exemplified mapping of 2D fracture elements and 1D channel elements aligned to surfaces, edges and diago-
nals, respectively, for a 3D finite matrix element. Local and global coordinates.
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(9-120)

These directional vectors can be easily used to compute
the directional cosines according to

(9-121)

with the basis (unit) vectors

(9-122)

Notice, for 2D feature elements (fracs) we need
only two directional vectors (i = 1,2), the remaining
directional cosines  are meaningless.

Often we can assume that the 2D feature elements
are perfectly flat, i.e., they represent noncurved 2D
geometries which occur for arbitrarily oriented linear
triangles or for vertical linear quadrilaterals in the 3D
space. Instead of using the above shape-derived expres-
sions (9-119) and (9-120), in such cases it is convenient
to derive the directional vectors  in a direct manner
(see Fig. 9.9).

We specify the -axis along the edge  of the 2D
feature element. The vector  is accordingly given by

(9-123)

The second directional vector  derived by simple
vector algebra (as summarized in the Appendix C)
yields

(9-124a)

with the auxiliary vector  formed along the adjacent
side  of the 2D element as

(9-124b)
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and the directional cosines  (i = 1,2; j = 1,2,3) can be
easily computed by using (9-121).

For 1D channel elements  the same procedure
can be applied to determine  (for i = 1; j = 1,2,3).
Here, only one row  of the rotation matrix is of
interest. Taking into consideration that 1D feature ele-
ments can be rather arbitrarily placed at mesh nodes
(which are not necessarily connected in one element
and oriented along edges) the following direct evalua-
tion procedure can be used to compute  for a 1D lin-
ear channel element spanning between the two nodes n
and m (cf. Fig. 9.8):

(9-125a)

(9-125b)
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Figure 9.9 Directional vectors  (i = 1,2) for a linear triangular element and a vertically-oriented linear quad-
rilateral element.
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To demonstrate the assembly process for the differ-
ent feature elements let us consider the simple model as
shown in Fig. 9.10 consisting of only one 3D element
(e = 1) connected with both a 2D fracture element (e =
2) and a 1D channel element (e = 3).

The assembly of the resulting matrix system has to be
performed according to (9-116), viz.,

Figure 9.10 3D prismatic matrix element connected with a 2D fracture element on the top surface and a 1D
channel element through a diagonal.
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For the 3D triangular prism (e = 1) it is assumed that
the elemental material properties can be specified in
the global coordinates ( ). Here, there is no need

for coordinate transformation into the -coor-
dinates. Accordingly,

For the 2D triangular fracture element (e = 2) the direc-
tional vectors are given by

where the formula (9-124a) is used. We note that
 and . It leads to the follow-

ing directional cosines (9-121)

(9-126)

O ψ· K ψ F–⋅+⋅ 0=

O TT1 O′1 T1⋅( )⋅[ ] TT2 O′2 T2⋅( )⋅[ ] TT3 O′3 T3⋅( )⋅[ ]+ +=

K TT1 K′1 T1⋅( )⋅[ ] TT2 K′2 T2⋅( )⋅[ ] TT3 K′3 T3⋅( )⋅[ ]+ +=

F TT1 F′1⋅( ) TT2 F′2⋅( ) TT3 F′3⋅( )+ += 









x y– z–

x′ y′– z′–

(9-127)T1 TT1
1 0 0 …
0 1 0  
0 0 1  
…    

= = O1 O′1= K1 K′1= F1 F′1=

(9-128)u1

10
0
2

= q
6
10
4

= u2

6
10
4

6 10 4
10
0
2

⋅

10 0 2
10
0
2

⋅

------------------------------------

 
 
 
 
 
 
 
 
 
 

t 0.6538=

10
0
2

–
0.5385–

10
2.6923

= =

        

u1 10.198= u2 10.370=
cbcilt=ö=NUP
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and we get the matrices to be assembled for the ele-
ment (e = 2) as

Taking the -vector for the 1D channel element
(e = 3)

(9-131)

(9-129)a2
0.9806 0 0.1961
0.0519– 0.9843 0.2596

. . .

= T2
0.9806 0 0.1961 …
0.0519– 0.9843 0.2596  

. . .  
…    

=

(9-130)

TT2 O′2 T2⋅( )⋅[ ]

0.9806 0.0519– . …
0 0.9843 .  

0.1961 0.2596 .  
…    

Ox ′x′
2 Ox ′y ′

2 0 …

Oy ′x′
2 Oy ′y ′

2 0  

0 0 0  
…    

0.9806 0 0.1961 …
0.0519– 0.9843 0.2596  

. . .  
…    

 
 
 
 
 
 
 
 
 

if anisotropic

O2 if isotropic













=

similar for TT2 K′2 T2⋅( )⋅[ ]

TT2 F′2⋅( )

0.9806 0.0519– . …
0 0.9843 .  

0.1961 0.2596 .  
…    

Fx ′
2

Fy ′
2

0
…

if directional

F2 if scalar











=

u1 u1

4
10–
9

= u1 14.036=
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we obtain

and finally the matrices for the element (e = 3) as

(9-132)a3
0.2850 0.7125– 0.6412

. . .

. . .

= T3
0.2850 0.7125– 0.6412 …

. . .  

. . .  
…    

=

(9-133)

TT3 O′3 T3⋅( )⋅[ ]

0.2850 . . …
0.7125– . .  

0.6412 . .  
…    

Ox′x ′
3 0 0 …

0 0 0  
0 0 0  
…    

0.2850 0.7125– 0.6412 …
. . .  
. . .  

…     
 
 
 
 
 
 
 

if anisotropic

O3 if isotropic











=

similar for TT3 K′3 T3⋅( )⋅[ ]

TT3 F′3⋅( )

0.2850 . . …
0.7125– . .  

0.6412 . .  
…    

Fx ′
3

0
0

…

if directional

F3 if scalar











=

cbcilt=ö=NUR
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^ééÉåÇáñ=^

kçãÉåÅä~íìêÉ

In the above the symbols have the following meaning:

Latin symbols

= flow area, ;
= coefficient to specify boundary

conditions;
= rotation matrix;
= thickness or depth, ;
= aperture or surface elevation, ;
= coefficient to specify boundary

conditions;
= concentration, ;
= Chezy roughness coefficient,

;
= specific heat capacity of fluid and

solid, respectively, ;
= space dimension, (1, 2 or 3);
= tensor of hydrodynamic dispersion,

;
= molecular diffusion, ;
= tensor of mechanical dispersion,

;
= strain-rate tensor of fluid, ;
= internal (thermal) energy density,

;
= gravitational unit vector, ;
= basis vectors, ;
= material surface;
= specific rate of temporary

production;

A L2( )
a

a
B L( )
b L( )
b

C ML 3–( )
C

L1 2⁄ T 1–( )
cf cs,

L2T 2– Θ 1–( )
D
D

L2T 1–( )
Dd L2T 1–( )
Dm

L2T 1–( )
d T 1–( )
E

L2T 2–( )
e 1( )
ei 1( )
F
f

NUS=ö=tÜáíÉ=m~éÉêë=J=sçäK=f



VKS=cáåáíÉ=bäÉãÉåí=cçêãìä~íáçåë
= general function;
= viscosity relation function, ;
= gravitational acceleration, ;
= general function;
= gravity vector, ;
= hydraulic head, ;
= unit (identity) tensor, ;
= Jacobian matrix;
= flux vector;
= Fickian mass flux vector,

;
= Fourierian heat flux vector,

;
= surface or interface exchange,

;
= , tensor of hydraulic

conductivity, ;
= tensor function specifying different

laws of flow motion, ;
= tensor of permeability, ;
= number of nodes;
= Manning roughness coefficient,

;
= basis function;
= outward-directed normal unit vector

at surface;
= number of Gauss points in each local

coordinate direction;
= fluid pressure, ;
= mass source term, 
= source/sink of heat, ;
= fluid mass sink/source, ;
= flux vector;
= radius of circular tube, ;
= space of dimension ;

= retardation, ;
= derivative retardation, ;
= radius, ;
= homogeneous chemical reaction

rate, ;
= hydraulic radius, ;
= , storage term, ;
= bed slope, inclination of the bottom

plane to the horizontal x and y
directions, ;

= compressibility, ;
= vector of friction slopes at channel

bottom, ;
= storativity, ;
= temperature and reference

temperature, respectively, ;
= final time, ;
= time, ;
= coordinate vector, ;
= Cartesian coordinates, ;
= axial or vertical coordinate, ;
= velocity vector of fluid, ;
= velocity vector of surface or

interface, ;
= spatial weighting function;

Greek symbols

= constant of friction slope
relationship, ;

= longitudinal and transverse
dispersivity, respectively, ;

= portions i of boundary ;
= fluid compressibility, ;

f .( )
fµ 1( )
g LT 2–( )
g .( )
g LT 2–( )
h L( )
I 1( )
J
j
jc

ML 2– T 1–( )
jT

MT 3–( )
j

ML 1– T 2–( )
K kρog( ) µo⁄

LT 1–( )
K

LT 1–( )
k L2( )
M
M

L1 3⁄ T 1–( )
N
n

nGauss

p ML 1– T 2–( )
Qc ML 3– T 1–( )
QT ML 1– T 3–( )
Qρ T 1–( )
q
R L( )
RD D

ℜ 1( )
ℜd 1( )
r L( )
rc

ML 3– T 1–( )
rhydr L( )
S BSo Ss+( ) 1( )
So

1( )
So L 1–( )
Sf

1( )
Ss 1( )
T To,

Θ( )
Tt T( )
t T( )
x L( )
x y, L( )
z L( )
v LT 1–( )
w

LT 1–( )
w

α
1( )

βL βT,
L( )

Γi ∂Ω
γ L 1–( )
cbcilt=ö=NUT
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= time step length at time plane n,
;

= total boundary;
= projected area of surface, ;
= volume of REV, ;
= porosity (= volume fraction of fluid

phase), ;
= , local coordinate, ;
= , local coordinate,

;
= local coordinate vector, ;
= , density ratio or

buoyancy coefficient, ;
= weighting coefficient, ;
= chemical decay rate, ;
= coefficient of skeleton compressibi-

lity, ;
= tensor of thermal hydrodynamic

dispersion, ;
= thermal conductivity for fluid and

solid, respectively, ;
= dynamic viscosity and reference

dynamic viscosity of fluid,
respectively, ;

= , local coordinate, ;
= fluid density and reference fluid

density, respectively, ;
= viscous stress tensor of fluid,

;
= deviatory stress tensor of fluid,

;
shear stress at bottom surface,

;
interfacial shear stress, ;

= shear stress at top surface,
;

= generalized friction factor;
= Newton-Taylor roughness

coefficient, ;
= pressure head or local water depth,

;
= sorption function, ;
= balance quantity;
= domain;
= azimuthal angle, ;
= Nabla (vector) operator, ;

Subscripts

corrected;
elemental;
time plane;
nodal or spatial indices;
reference value;

Superscripts

phase index;
space dimension;
elemental;
fluid (water) phase;
time plane;
solid phase;
transpose of a matrix;
surface index;

∆tn
T( )

∂Ω
δS L2( )
δV L3( )
ε

1( )
ζ 1– ζ 1≤ ≤( ) 1( )
η 1– η 1≤ ≤( )

1( )
η 1( )
Θ ρ ρo–( ) ρo⁄

1( )
θ 0 θ 1≤ ≤( )
ϑ T 1–( )
κ

L 1–( )
Λ

MLT 3– Θ 1–( )
λf λs,

MLT 3– Θ 1–( )
µ µo,

ML 1– T 1–( )
ξ 1– ξ 1≤ ≤( ) 1( )
ρ ρo,

ML 3–( )
σ

ML 1– T 2–( )
σ'

ML 1– T 2–( )
σbottom

ML 2– T 2–( )
σinterface ML 2– T 2–( )
σtop

ML 2– T 2–( )

τ
ϒ

1( )
φ

L( )
χ C( ) 1( )
ψ
Ω
ω °( )
∇ L 1–( )

corr
e
n
i j k, ,
o

α
D
e
f
n
s
T
ν
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^ééÉåÇáñ=_

^å~äóíáÅ=Éî~äì~íáçå=çÑ=ã~íêáñ=ÉäÉãÉåíë
EVJUUF=Ñçê=~=Na=ÅÜ~ååÉä=ÉäÉãÉåí

We consider the following linear 2-node element e

with the basis functions at the nodes 1 and 2

(B1)

and its derivatives

(B2)

Furthermore, we have for the element, cf. (9-100),

(B3)

and with  and (B4)

(B4)

and 

(B5)

Then, the divergence terms (9-102) becomes with (B2)

(B6)

According to (9-105)

(B7)

the matrices (9-88) become for element e

ξξ = -1 ξ = +1 x
x = x(1) x = x(2)

1 2

Ni
1

N1 N2

0

∆xe

e

N1
1
2
--- 1 ξ–( )=

N2
1
2
--- 1 ξ+( )=

∂N1
∂ξ

---------  – 1
2
---=

∂N2
∂ξ

--------- 1
2
---=

x N1x 1( ) N2x 2( )+=

J J11
∂x
∂ξ
------

∂N1
∂ξ

---------x 1( )
∂N2
∂ξ

---------x 2( )+
∆xe

2
--------= = = =

J 1– 1
J

------- 2
∆xe
--------= =

∇N1

∇N2

J 1–

∂N1
∂ξ

---------

∂N2
∂ξ

---------

1
∆xe
--------–

1
∆xe
--------

= =

dΩ dx J ξd
∆xe
2

-------- ξd= = =
cbcilt=ö=NUV
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(B8)Oe Se N1N1 N1N2

N2N1 N2N2

Ωd
Ωe

∫
Se

4
----- 1 ξ–( )2 1 ξ2–( )

1 ξ2–( ) 1 ξ+( )2

∆xe
2

-------- ξd
1–

1

∫
Se∆xe

6
-------------- 2 1

1 2
= = =

(B9)

Ke K1
e K2

e K3
e K4

e+ + +=

K1
e qe N1∇N1 N1∇N2

N2∇N1 N2∇N2

Ωd
Ωe

∫
qe

2∆xe
------------ 1 ξ–( )– 1 ξ–( )

1 ξ+( )– 1 ξ+( )

∆xe
2

-------- ξd
1–

1

∫
qe

2
----- 1– 1

1– 1
= = =

K2
e De ∇N1∇N1 ∇N1∇N2

∇N2∇N1 ∇N2∇N2

Ωd
Ωe

∫
De

∆xe
2

--------- 1 1–
1– 1

∆xe
2

-------- ξd
1–

1

∫
De

∆xe
-------- 1 1–

1– 1
= = =

K3
e Φe N1N1 N1N2

N2N1 N2N2

Ωd
Ωe

∫
Φe

4
------ 1 ξ–( )2 1 ξ2–( )

1 ξ2–( ) 1 ξ+( )2

∆xe
2

-------- ξd
1–

1

∫
Φe∆xe

6
---------------- 2 1

1 2
= = =

K4
e ae N1N1 N1N2

N2N1 N2N2
ξ ξ2 1= =

ξ ξ1 1–= =

ae

4
-----

1 ξ1–( )2 1 ξ1
2–( )

1 ξ2
2–( ) 1 ξ2+( )2

ae 1 0
0 1

= = =

(B10)

Fe F1
e F2

e+=

F1
e Qe N1

N2

Ωd
Ωe

∫
Qe

2
------ 1 ξ–( )

1 ξ+( )

∆xe
2

-------- ξd
1–

1

∫
Qe∆xe

2
--------------- 1

1
= = =

F2
e aeψ2 be–( )

N1

N2
ξ ξ2 1= =

ξ ξ1 1–= =
aeψ2 be–( )

2
---------------------------- 1 ξ1–

1 ξ2+
aeψ2 be–( ) 1

1
= = =
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Finally, the discretized matrix equation (9-88) can be
summarized as

^ééÉåÇáñ=`

aÉêáî~íáçå= çÑ= íÜÉ= çêíÜçÖçå~ä= ÇáêÉÅJ
íáçå~ä=îÉÅíçêë= =Ñçê=~=Oa=ÛÑä~íÛ=ÉäÉãÉåí

For a linear 2D ’flat’ element we can find the fol-
lowing vectors for a typical element with the nodes

:

(C1)

Since the vector  is perpendicular to the vec-
tor  the dot product yields

(C2)

Using the parametric description of the vector  as

(C3)

the parameter t can be easily found if inserting (C3)
into (C2)

(C4)

As a result, we get

(C5)

(B11)

Se∆xe
6

--------------


 2 1

1 2

ψ· 1
e

ψ· 2
e

 
 
 
 
 

qe

2
----- 1– 1

1– 1
De

∆xe
-------- 1 1–

1– 1

Φe∆xe
6

---------------- 2 1
1 2

ae 1 0
0 1

+ + +
 
 
  ψ1

e

ψ2
e

 
 
 
 
 

 –⋅+⋅
e
∑

 
Qe∆xe

2
--------------- 1

1
– aeψ2 be–( ) 1

1 



– 0{ }=

ui

mnl k( )

p u1≡
xn xm–

yn ym–

zn zm–

= q
xl xm–

yl ym–

zl zm–

=

u2 q v–≡
p u1≡

q v–( ) p⋅ 0=

v

v tp=

q p

v

y ′

u2 u1

m

n
l

x ′

k

x

z
y

q v–

q tp–( ) p⋅ 0=

t q p⋅
p p⋅
----------=







v q p⋅
p p⋅
---------- 

  p=
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and finally (with )

(C6)

^ééÉåÇáñ=a

fåéìí=çÑ=ÅêçëëJëÉÅíáçå~ä=Ç~í~I=ëí~åÇ~êÇ
áãéäÉãÉåí~íáçåë=çÑ=ÜóÇê~ìäáÅ=ê~Çáá=~åÇ
íÜÉáê= êÉä~íáçåë= íç= ÇáÑÑÉêÉåí= íóéÉë= çÑ
Ñê~ÅíìêÉë= Ñçê= íÜÉ= e~ÖÉåJmçáëÉìáääÉ= ~åÇ
íÜÉ=j~ååáåÖJpíêáÅâäÉê=ÑêáÅíáçå=ä~ïë

In FEFLOW a reduced data set is used to input the
geometric relationships of the fractures. There is no
direct input of the hydraulic radii  for the different
types of fracture elements applied to both the Hagen-
Poiseuille and the Manning-Strickler law of fluid
motion. Instead, the geometry of the cross-sections is
input by the flow area  for 1D elements and by the
thickness/flow depth  for 2D fracture elements (see
Table 9.8).

On the other hand, the friction laws for the Hagen-
Poiseuille flow in form of Eq. (9-56) and for the Man-
ning-Strickler flow in form of Eq. (9-67) (with Table
9.4) are specified by the hydraulic aperture  and the
friction parameter , respectively (cf. Table 9.9).

Based on the input parameters ,  or  in
FEFLOW the following relationships of the hydraulic
radius  are implemented according to the dimen-
sion of the fracture elements. They represent so-called
standard implementations as summarized in Table 9.10.

Table 9.8 Geometric input parameter

Dimension Fracture type/case
(Table 9.5)

Parameter

1D 1DPP, 1DPN, 1DAP, 
1DAN

flow area, 

2D 2DPP, 2DPN thickness, 

p u1≡

u2 q v–≡ q q p⋅
p p⋅
---------- 

  p–=

u2 q
q u1⋅
u1 u1⋅
---------------- 

  u1–=








rhydr

A
B

A

B

Table 9.9 Frictional input parameter

Law Parameter

Hagen-Poiseuille hydraulic aperture, 

Manning-Strickler roughness, 

Table 9.10 Implemented standard hydraulic radii

Dimension 
of fracture 
elements

expressed by appropriate input 
parameters

Hagen-
Poiseuille

Manning-
Strickler

1D
(plane)

(submerged slit 
plane, type B of 

Table 9.3)

(submerged qua-
dratic cross-sec-

tion)

2D
(plane) (submerged slit 

plane, type B of 
Table 9.3)

b
M

b

M

b A B

rhydr

rhydr

b 2⁄

A 4⁄

B 2⁄
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As seen from Table 9.10 the input parameter in form
of the hydraulic aperture  for the Hagen-Poiseuille
law and the geometric input parameter in form of the
flow area  or thickness  for the Manning-Strickler
law are used to express  internally in FEFLOW.
Accordingly, FEFLOW assumes that in the case of
using a Hagen-Poiseuille law a submerged slit geome-
try is standard (both in 1D and 2D). In case of the Man-
ning-.Strickler law a submerged quadratic cross section
( ) is considered the standard geometry in 1D
and a submerged slit plane geometry is standard in 2D.
The question arises how is it possible to differ from the
standard geometry types? For example, instead of a
quadratic cross-section for a 1D fracture element, a
rectangular plane or an axisymmetric geometry is to be
used.

To specify hydraulic radii  which are different
to the embodied standard geometries (Table 9.10) one
can input corrections in the hydraulic aperture  for
the Hagen-Poiseuille law and in the Manning rough-
ness coefficient  for the Manning-Strickler law.
These corrected parameters can be derived in the fol-
lowing manner.

The standard hydraulic conductivity  for the
Hagen-Poiseuille law is according to Eq. (9-56) and
Table 9.10:

(D1)

where  for plane geometry. Furthermore, the fol-
lowing standard parameters are used here for water:

, , and . It
results a factor of . A
hydraulic radius which is different from the standard
geometry, and parameters, which are different from the
standard parameter factor , can be derived from the
identity

(D2)

A corrected hydraulic aperture  can be obtained
from (D2) as

(D3)

where  is the actual (true) hydraulic radius, which
can be taken from Table 9.3, and  is the true parameter
factor, where dynamic viscosity, gravity and density
can be specified different from the standard settings in

. Table 9.11 summarizes the corrected hydraulic
apertures  for interesting applications.

b

A B
rhydr

A B2=

rhydr

b

M

K

K
rhydr

2

a
-----------

ρog
µo

---------I b2

12
------

ρog
µo

---------I= =

a 3=

ρo 103 kg m 3–= µo 1.3 Pa s= g 9.81 m2s 1–=
fo ρog µo⁄ 7.55 106 m 1– s 1–⋅= =

fo

rhydr
2

a
-----------f b2

12
------fo= with f ρg

µ
------=

bcorr

bcorr
f
fo
----2 3

a
----------rhydr= a 3    for plane geometry

2    for axisymmetric geometry



=

rhydr
f

fo
bcorr
cbcilt=ö=NVP
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On the other hand, the standard hydraulic conduc-
tivity  for the Manning-Strickler law is according to
Eq. (9-67) with Tables 9.4 and 9.10:

(D4)

Accordingly, from (D4) we can find a corrected Man-
ning coefficient  in the following form to input a
standard-different geometry of the fracture elements in
1D and 2D

(D5)

where  is the true (physical) Manning roughness
coefficient. Tables 9.12 and 9.13 summarize the correc-
tions  for the Manning coefficients for 1D and
2D fracture elements, respectively, which are required
when fracture cross-geometries different to the stan-
dard geometry have to be input.

Table 9.11 Corrected apertures  for different 
applications in the case of Hagen-Poiseuille law for 

1D and 2D fracture elements a)

~F

Type

A
submerged rectangular cross-

section

B
submerged slit plane

no correction is 
needed if 

C
open rectangular cross-section

D
open wide channel (b > 20B)

plane

E
submerged circular cross-section
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fo
ρog
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--------- 7.55 106 m 1– s 1–⋅= = f ρg
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------=
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∇h 24
-------------------         for 2D 









= =
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  2 3⁄

    for 1D
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--- 
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        for 2D
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Table 9.12 Corrected Manning roughness 
coefficient  for different applications in the 

case of Manning-Strickler law for 1D fracture 
elements

Type

A
submerged rectangular cross-

section

Note if  and 
 then 

, i.e., 
no correction is 
needed

B
submerged slit plane

C
open rectangular cross-section

D
open wide channel (b > 20B)

plane

E
submerged circular cross-section

Mcorr

Mcorr M⁄

B

b

2Bb
b B+( ) A

-------------------------- 
  2 3⁄

b B=
A B2=
Mcorr M=

b

B

2b
A

------- 
  2 3⁄

B

b

4Bb
b 2B+( ) A

----------------------------- 
  2 3⁄

B

b

4B
A

------- 
  2 3⁄

R 2R
A

------- 
  2 3⁄

Table 9.13 Corrected Manning roughness 
coefficient  for different applications in the 

case of Manning-Strickler law for 2D fracture 
elements

Type

A
submerged rectangular cross-

section

B
submerged slit plane

no correction is 
needed

C
open rectangular cross-section

D
open wide channel (b > 20B)

plane

Mcorr

Mcorr M⁄

B

b

b
b B+
------------- 

  2 3⁄

b

B

1

B

b

2b
b 2B+
---------------- 

  2 3⁄

B

b

22 3⁄ 1.5874=
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FEFLOW4 extends the capabilities of modeling
reversible and irreversible chemical reactions for sin-
gle-species and multispecies systems of the flow and
transport in porous media under variably saturated con-
ditions. It encompasses the following types of reac-
tions:

binary ion exchange reaction between fluid and solid
phase (adsorption isotherms)

 (10-1)

first-order reaction (decay)

(10-2)

consecutive reaction (decay chains, serial reaction)

(10-3)

Michaelis-Menten mechanism (Monod kinetics)

(10-4)

where  represent chemical species (reactants,
products), the symbol  identifies the direction of
reaction,  is used for reversible reactions at chem-
ical equilibrium.

In the following the basics of the reactive flow and
transport used in FEFLOW are summarized. It ends up
with a description of the fundamental transport equa-
tions, options of chemical reactions and related rate
constants available in FEFLOW.

NMKO dçîÉêåáåÖ= íê~åëéçêí
Éèì~íáçåë

NMKOKN _~ä~åÅÉ=ëí~íÉãÉåíë

The mass conservation of chemical species in the
fluid  and solid  phases of a porous medium can be
concisely written in the following form3,4,6

A B+ C D+→  ←

A P→

A B C→ →

A E+ AE P E+→→  ←

A B …, ,
  →

  →  ←

f s
NM
`ÜÉãáÅ~ä=êÉ~Åíáçåë
cbcilt=ö=NVT
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where each species, labeled by the subscript , is asso-
ciated with a particular phase , where f and
s indicate the fluid and the solid phase, respectively. In
(10-5) it is

= concentration of species  of -phase;
= tensor of hydrodynamic dispersion;
= diffusive flux of species  across the phase

interfaces;
= species indicator, ;
= operator as defined by Eq. (10-5);
= total number of species;
= Darcy flux of -phase;
= zero-order nonreactive production term of

-phase;
= homogeneous rate of reaction of species 

within the -phase;
= phase indicator, ;
= volume fraction of -phase;

NMKOKO oÉ~Åíáçå= ê~íÉë= ~åÇ= ãìäíáéÜ~ëÉ
~ëéÉÅíë

The solution of the balance equations (10-5)
requires knowledge of the reaction rates for kinemati-
cally controlled reactions. Different forms of the rate

law can be derived. This forms depend on the type of
reaction and whether the reaction is homogeneous or
heterogeneous. While homogenous reactions take place
only in one phase (f or s), the reaction of species associ-
ated with different phases (e.g., fluid species reacts
with solid species) are referred to as a heterogeneous
reaction.

In general, if a species k exists in more than one
phase , for instance the species is exchanged between
fluid f and solid s phase in an adsorption process, the
transport equations (10-5) have to be summed over all
phases 

(10-6)

where

(10-7)

is the heterogeneous reaction rate of species  accumu-
lated over all its existing phases. Let the bulk rate of
reaction of species  in all phases be  as7

(10-5)εα Rhomk
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α+( ) L= k

α
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α t∂
∂ εαCk

α( ) ∇ Dk
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α–⋅+⋅– α fluid=
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t∂
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α– α solid=
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=
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α k
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α k
α

α α f s …, ,=
εα α

α

α

Lk
αCk

α( )
α
∑ εαRhomk

α Rhetk
+

α
∑=

Rhetk
εαIk
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∑=

k

k Rk
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(10-8)

the mass balance equation (10-6) for species  to be
solved for a multiphase system becomes

(10-9)

If a species  exists only in one phase, say phase ,
then (10-6) is reduced to

(10-10)

The transport processes of interest refer to a fluid
phase f (liquid, water) moving through a porous
medium in which the void space is variably saturated
by the f-phase. Conceptually, a variably saturated
media consists, at least, of three phases: water , air (or
gas)  and solid . Thus, we find the following volume
fractions

(10-11)

where  is identified as the porosity (void space) of the
porous media. Since the f-phase occupies only part of
the void space, the saturation  of the f-phase may be
used to define the relative quantity as

(10-12)

For saturated media  becomes unity and  with
.

For unsaturated conditions  it becomes appar-
ent that only a part of the total area of the solid is
exposed to ion-exchange reactions (adsorptions).
Accordingly, we can subdivide the solid volume frac-
tion  into chemically active and inactive parts, viz.,

(10-13)

and the phase indicator ranges now
.

Obviously, the portion of the total surface of the
solid that is in contact with the f-phase depends on .
It can be assumed2 that the ratio of the solid-liquid
interface to the total area of the solid is equal to the
ratio of active solid volume (i.e., solid participating in
the exchange reactions) to the total volume of solid,
and that each of these ratios, in turn, is equal to the
ratio of the liquid-occupied portion of the void space to
the total void space volume, i.e., equal to . Thus,

(10-14)

and we obtain

(10-15)

In practical modeling of flow and transport in unsat-
urated media, the air-phase a is commonly assumed
stagnant. Focussing on dissolved chemical species k in

Rk εαRhomk

α Rhetk
+

α
∑=

k

Lk
αCk

α( )
α
∑ Rk=

k 1 … N, ,= α f   or  s  for each  k=

k α

Lk
αCk

α εαRhomk

α Rhetk
+=

f
a s

1 εf εa+

ε

εs+=

  

ε

sf

sf
εf
ε
----= 0 sf 1≤<( )

sf εf ε=
εa 0=

sf 1<

εs

εs εsactive εsinactive+=

α f a sactive sinactive, , ,=

εf

sf
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---------------------------------

εsactive

εs
----------- f εf( )

εf
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----≈ sf= = =

εsactive f εf( )εs sfεs≈ sf 1 ε–( )= =
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the f-phase for which the exchange to the air phase is
negligible and the exchange to the solid phase occurs
exclusively on the chemically active solid surface, the
above transport equations (10-5) have to be considered
only for the f- and -phases:

(10-16)

Considering now the two-phase system of the fluid
(f) and solid  phase, the mass transport equation
(10-6) with (10-5) for a species  can be written in the
form

where  is introduced as a nonreac-
tive bulk production term.

For a certain number of serial and parallel reactions
 it is useful to develop the reaction rate for

a species  in dependence on homogeneous and heter-
ogeneous types of reaction. This can be expressed in
the following general form3,6

(10-18)

where

= total number of reactions;
= number of homogeneous reactions

;
= rate of reaction  associated with the type

of reaction r ;
= stoichiometric number of species k and

reaction r.

Note, the number of heterogeneous reactions is
. 

NMKP _~ëáÅ=ÅÜÉãáÅ~ä=âáåÉíáÅë
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The basis of the chemical modeling represents the
equations of reactions  which can be written in their
general stoichiometric form3

forward reactions 

sactive

α f sactive,=

sactive( )
k

(10-17)
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r Nr
hom 1+=
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backward reactions 

for      (  = number of reactants)
and 

which is related and quantified by the stoichiometric
coefficients . The algebraic stoichiometric num-
bers  behave:

  for     (reactants)
  for    (products).

NMKPKO o~íÉ=ä~ïë=~åÇ=ê~íÉ=Åçåëí~åíë

Based on that stoichiometric form the reaction rates
 for the forward and backward  reac-

tions can be expressed by the rate laws

 (10-21)

where  and  are rate constants. The square bracket
symbol  refers to the (chemical) activity of the kth
species. The activity can be replaced by the product of
the activity coefficient  and the concentration ,
e.g.,

(10-22)

The activity coefficients  can be determined using
empirical relationships, for example the      Debye-
Hückel or Davies equations9. For dilute solutions, 
approaches unity.

NMKPKP `ÜÉãáÅ~ä= ÉèìáäáÄêáìã= ~åÇ= ä~ï
çÑ=ã~ëë=~Åíáçå=Eij^F

Chemical equilibrium describes a situation in which
forward and backward reactions are equal. It means

(10-23)

(10-19)k+
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or applied to the rate laws (10-21) with (10-18)

(10-24)

Since

(10-25)

it is

(10-26)

and with (10-21)

(10-27)

Expression (10-27) is known as the law of mass action
(LMA), where  is the equilibrium constant to be
known (measurable) for given equilibrium reactions 1
and 2. 

For example, considering the more simplified equi-
librium reactions in form of (10-1) in the form

(10-28)

the LMA expression is

(10-29)

NMKPKQ qÜÉ=ëíÉ~ÇóJëí~íÉ=~ééêçñáã~íáçå

The steady-state approximation1 (SSA) assumes
that, during the major part of the reaction, the rates of
change of concentrations of all reaction intermediates
are negligibly small, i.e.,

(10-30)

For example, considering the consecutive reaction of
(10-3) in the form

(10-31)

the SSA applied for the species B becomes

(10-32)

NMKPKR mêÉJÉèìáäáÄêá~

Considering the consecutive reactions
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(10-33)

the pre-equilibrium arises when the rates of formation
of the intermediate and its decay back into reactants are
much faster than its rate of formation of products.
Applying the SSA scheme to species C of (10-33) it
yields (exemplified for a homogeneous reaction in the

-phase)

(10-34)

If  and  it can be assumed that A, B and C
are in equilibrium. Thus, the -term in (10-34) van-
ishes and one gets

(10-35)

Then, the reaction rate for species C takes the form

(10-36)

which represents a second-order reaction law.

On the other hand, the following reaction system

(10-37)

can be simplified with the pre-equilibrium assumption.
The reaction rate of A simplifies to

(10-38)

NMKQ pÉäÉÅíÉÇ= êÉ~Åíáçå= éêçJ
ÅÉëëÉë

NMKQKN fçåJÉñÅÜ~åÖÉ= êÉ~Åíáçåë
E~Çëçêéíáçå=áëçíÜÉêãëF

Consider the reversible binary ion exchange (heter-
ogeneous) reactions between the fluid species  and
the sorbed (solid) species  in the form

(10-39)

At the equilibrium the LMA (10-27) yields
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(10-40)

Introducing the ion exchange capacity  for the
sorbed species in form of

(10-41)

and the total solution normality for the fluid phase f as

(10-42)

Both  and  represent constant (measurable)
capacities, so that for the binary ion exchange reaction
(10-39) with  and  the
LMA relationship (10-40) can be used to explicitly
express the (sorbed) solid species  as a function of
the (dissolved) fluid species , viz.4,

(10-43)

where  is the adsorption function.

For monovalence  the Langmuir

adsorption isotherm can be directly derived3 from (10-
40). It leads to the following adsorption function

(10-44)

where  and  are sorption coefficients.
Admitting for low concentrations  the well-
know Henry adsorption isotherm results

(10-45)

Note,  when  (see Diersch3).

In the case of heterovalent equilibrium reactions
 a polynomial expression in form of the

Feundlich adsorption isotherm results3

(10-46)

where  is a sorption coefficient and  is a sorption
exponent.

Considering the species  in the fluid and
active solid phase  the summation transport
equation (10-6) and (10-17) is obtained in the form:

which represents a single-species transport equation for the fluid species . In  it is assumed that no further
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heterogeneous reactions occur, so that 
according to (10-39). In a more general form it reads

(10-48)

in introducing the retardation factor  (by using (10-
15) and (10-12))

(10-49)

with the adsorption function 

(10-50)

where  is defined.

The right-hand side of  and (10-48) describes irre-
versible homogeneous reactions of the species in the
fluid and solid phase. Under exclusive reversible reac-
tions as described by the stoichiometric equation (10-
39) the homogeneous reaction rates  and  of
the species in the fluid and solid phase, respectively,
vanishes, i.e., . However, parallel to
reversible reaction (10-39), reaction kinetics can occur
for the species k both in the f- and the active s-phase
which will be described next.

NMKQKO cáêëíJçêÇÉê=ÇÉÅ~ó=êÉ~Åíáçåë

Additionally to the reversible heterogeneous reac-
tion (10-39) the species k in the f- and active s-phase
should be subjected to a irreversible homogeneous
first-order decay into products P according to

(10-51a)

(10-51b)

We can assume that the reversible heterogeneous reac-
tion (10-51a) is much faster than the decay reactions
(10-51b). Under such conditions the pre-equilibrium
assumption (10-38) becomes applicable. It leads to the
following homogeneous reaction rates for the species k
in the f- and s-phase

(10-52)

where the solid (sorbed) species  is replaced by the
fluid species  due to the equilibrium relationship
(10-43).

Inserting the reaction rates (10-52) into (10-48) the
following transport equation results
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(10-53)

where the first-order decay rate  is introduced as

(10-54)

and the retardation factor  is defined as in (10-49).

NMKQKP jáÅÜ~ÉäáëJjÉåíÉå=ãÉÅÜ~åáëã

The Michaelis-Menten mechanism describes an
enzyme-catalyzed reaction in which a species A is con-
verted into products P in dependence on the concentra-
tion of the enzyme E. The mechanism is the following

(10-55)

where EA denotes a bound state of the enzyme and its
species. We can analyze the mechanism if assuming a
pre-equilibrium for EA. The reaction rate for EA is as
exemplified of a homogeneous reaction in the -phase

(10-56)

It follows

(10-57)

Introducing the total concentration of enzyme as

(10-58)

and assuming only a little enzyme is added so that 
differs only slightly from its total concentration, then

 (10-59)

which rearranges to

(10-60)

The reaction rate for species A in the -phase is

(10-61)

which can be simplified by applying the pre-equilib-
rium condition (10-56) as

(10-62)

Inserting (10-60) into (10-62) it yields finally

(10-63)

where

t∂
∂ εfℜkCk( ) ∇ D ∇Ck⋅( ) ∇ qCk( ) Qk–⋅+⋅–
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-

←
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REA εα rA
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+

rEA
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– rEA
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=

= =

EA[ ] A[ ] E[ ]
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-----------------= km
ka

- kb+
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----------------=

ET[ ] E[ ] EA[ ]+=

A[ ]

EA[ ]
A[ ] ET[ ] EA[ ]–( )

km
-------------------------------------------=

EA[ ]
ET[ ] A[ ]

km A[ ]+
---------------------=

α

RA εαka
+ A[ ] E[ ]– εαka

- EA[ ]+=

RA εαkb EA[ ]–=

RA  εα
kb ET[ ] A[ ]
km A[ ]+

-------------------------–  εα
vmCA

α

Km CA
α+

---------------------–= =
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(10-64)

We can generalize the reaction if we assume that the
Michaelis-Menten kinetics is subjected to both the
fluid and solid species k of the reversible homogeneous
reaction according to (10-51a). In doing so, we are
interested in the reactions

(10-65a)

(10-65b)

which lead to the following reaction rates

(10-66)

Inserting the reaction rates (10-66) into (10-48) the fol-

lowing transport equation results

(10-67)

with the modifying function

(10-68a)

and a specific Michaelis-Menten reaction rate as

(10-68b)

where the retardation factor  and the sorption func-
tion  are according to (10-49) and (10-50), respec-
tively.

NMKQKQ `çåëÉÅìíáîÉ=êÉ~Åíáçåë

Considering consecutive reactions (termed also as
decay chains or serial reactions10, typical in radioactive
decay) in the following form

(10-69)

the homogeneous reaction rates for the initial reactant
A, the intermediate species B and C as well as the prod-
uct D in the -phase can be written as

vm kb ET[ ]= maximum velocity of enzymolysis

Km
km
γA
------= Michaelis (Monod) constant

  →νk Ak
f νj Aj

s        νk Ak
s νj Aj

f++   ←

ka
+ kb

Ak
f E        EA        P E+→→+  

ka
-

←

ka
+ kb

Ak
s E        EA        P E+→→+  

ka
-

←

















Rhomk

f  
vmCk

f

Km Ck
f+

--------------------–=

Rhomk

s  
vmCk

s

Km Ck
s+

--------------------–  
vmχCk

f

Km χCk
f+

-----------------------–= =










t∂
∂ εfℜkCk( ) ∇ D ∇Ck⋅( ) ∇ qCk( ) Qk–⋅+⋅–

εf ℜk ϕk+( )ϑk
mCk–=

ϕk
χk 1–

1
Km
Ck
-------+

-----------------=

ϑk
m vm

Km χkCk+
--------------------------=

ℜk
χk

ka kb kcA    B    C    D→→ →

α
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(10-70)

Additionally, we again assume that such a type of con-
secutive reaction is subjected to both the fluid and solid
species k of the reversible heterogeneous reaction
according to (10-51a). In specifying the decay rates
(10-70) in the right-hand term of the governing trans-
port equation (10-48) we find the following set of bal-
ance equations for the four species:

In a generalized form the equation system (10-71) can
be written for species k of the fluid phase f as

(10-72)

Notice, in (10-72) it is by definition
.

It is to be mentioned that the consecutive reactions are
no more a single-species transport process. However,
FEFLOW becomes capable of simulating such type of
multispecies transport equations (10-72) coupled via
the consecutive reaction terms by using a specific inter-
face (IFM) programming module chain.so, where
the equations are consecutively solved for an interme-
diate species  under specific boundary

conditions.

NMKR pìãã~êáòÉÇ= Éèì~íáçåë
~åÇ= êÉä~íáçåëÜáéë= ìëÉÇ= áå
cbcilt= Ñçê= ãçÇÉäáåÖ
êÉ~ÅíáîÉ= íê~åëéçêí= éêçJ
ÅÉëëÉë

The reactive transport modeling is based on the fol-
lowing transport equation for species k dissolved in the
fluid phase f

RhomA

α ka A[ ]–=

RhomB

α ka A[ ] kb B[ ]–=

RhomC

α kb B[ ] kc C[ ]–=

RhomD

α kc C[ ]=












(10-71)

t∂
∂ εfℜACA( ) ∇ D ∇CA⋅( ) ∇ qCA( ) QA–⋅+⋅– ε– fℜAϑACA=

t∂
∂ εfℜBCB( ) ∇ D ∇CB⋅( ) ∇ qCB( ) QB–⋅+⋅– εf ℜAϑACA ℜBϑBCB–( )=

t∂
∂ εfℜCCC( ) ∇ D ∇CC⋅( ) ∇ qCC( ) QC–⋅+⋅– εf ℜBϑBCB ℜCϑCCC–( )=

t∂
∂ εfℜDCD( ) ∇ D ∇CD⋅( ) ∇ qCD( ) QD–⋅+⋅– εfℜCϑCCC= 












t∂
∂ εfℜkCk( ) ∇ D ∇Ck⋅( ) ∇ qCk( ) Qk–⋅+⋅–

εf ℜk 1– ϑk 1– Ck 1– ℜkϑkCk–( )= k 1 … N, ,=

ℜ0 ϑ0 C0 0≡= =

k 2  ( = B)=
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(10-73)

where the different reactions types and relationships
are summarized in Table 10.1. The corresponding
material parameters to be input for the reaction and
sorption types are listed in Table 10.2.

Remarks:

(1) The Henry isotherm with an retardation factor of 

(10-74)

if often expressed by the distribution coefficient  in
the form2

(10-75)

where  is the density of solid. An alternative defini-
tion of the distribution coefficient can sometimes be
found as

(10-76)

where  is the bulk density of the porous
media (mass dry media per total volume).

(2) Microbiological degradation processes represents

biologically catalyzed reactions8 which can be appro-
priately modeled by Monod kinetics. A typical applica-
tion is the oxidation of organic matter by aerobic
bacteria. As long as the dissolved oxygen remains
higher than a critical level the oxidation is unbounded.
Below a critical level, the rate of aerobic respiration
decreases with decreasing  concentration, and van-
ishes when no  is left. Thus, the limitation of aero-
bic respiration by  obeys,

(10-77)

where  is the maximum rate and  is the dis-
solved oxygen activity. According to (10-77), when

 the availability of oxygen is limiting and
the rate of aerobic respiration exhibits a first-order
dependence on . When, on the other hand,

, the aerobic bacteria are functioning at
maximum capacity, that is, they cannot produce more
enzymes to utilize the excess .

Monod reaction laws are equivalent to the Michaelis-
Menten mechanism (10-65b) (10-66) with the reaction
rates summed for the fluid and solid phases

(10-78)

It is a hyperbolic function that simplifies to a first-order
reaction in  when , i.e.,

t∂
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(10-79) Such a simplistic first-order reaction ignore the fact
that active microorganisms must be present to catalyze
the reactions.

εf ℜk ϕk+( )– ϑk
mCk    εfℜkϑkCk–⇒

with ϑk
vm
Km
-------=

Table 10.1 Reaction types and relationships

Reaction type
(reversible and irreversible reactions) Retardation/sorption Decay rate Modifying 

function

exchange reaction with first-order decay

1

with

and

exchange reaction with Michaelis-Menten 
kinetics

1
with

exchange reaction with consecutive reaction 
(decay chain)

2
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1 k2Ck+
---------------------     Langmuir

b1Ck
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(3) Nonequilibrium sorption processes can be of
importance for in situ bioremediation of contaminated
aquifers5. Typically, if groundwater extraction is
applied the contaminant concentrations show a rapid
initial decrease followed by a period of a much slower
decrease in concentration. One of the reason is that the
rate of desorption of contaminants from the aquifer sol-
ids to the fluid phase is slow, especially at low concen-
trations. While soil-sorbed contaminants have been
shown to be generally unavailable for bioremediation,
only the contaminant concentration of the fluid phase
can be directly influenced in the remediation process.
When desorption of the contaminant from the solid
phase to the fluid phase becomes slow, the performance
of in situ bioremediation is controlled by the desorption
mechanism. This is called rate-limiting desorption,
which can be described by the following nonequilib-
rium reaction of two different species  and 

(10-80)

The heterogeneous reaction rates for the two species 
and  in the solid and fluid phases, respectively, are

(10-81)

Inserting the quotient of the rate constants as the equi-
librium constant, cf. Eq. (10-29)

 (10-82)

we get

(10-83)

where  at  represents now a first-
order desorption rate coefficient.

The mass transport equations (10-10) for solid and
fluid species are then

Table 10.2 Model input parameter for reactive transport

Retardation/sorption Decay

Henry Langmuir Freundlich first-
order Michaelis-Menten Decay chain

Symbol

Unit

k1 k1 k2 b1 b2 ϑk vm Km ϑk 1– ϑk

1[ ] 1[ ] mg
l

-------
1– mg

l
-------

1 b2–
1[ ] d 1–[ ] mg

l
-------d

1– mg
l

------- d 1–[ ] d 1–[ ]

k j
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+

Ak
f                                         Aj

s
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-

j
k

Rhetj
ka

+ Ak
f[ ] ka

- Aj
s[ ]–=

Rhetk
ka

+ Ak
f[ ]– ka

- Aj
s[ ]+ Rhetj

–= =

ka
+

ka
-

----- Keq=

Rhetj
ka

- Keq Ak
f[ ] Aj

s[ ]–( ) ϑdesorp KeqCk
f Cj

s–( )= =

Rhetk
Rhetj

–=

ϑdesorp ka
- γj= γj γk≈
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NMK=`ÜÉãáÅ~ä=êÉ~Åíáçåë
For sake of simplicity, denoting with  the fluid
concentration and with  the sorbed concentra-
tion Eq. (10-84) with (10-5) gives the following set of

mass transport equations describing the nonequilibrium
sorption processes

which have to be solved for  and .
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Starting point for modeling gas flows in porous
media represents the following fundamental balance
laws2:

Mass conservation (continuity equation)

(11-1)

Momentum conservation (Darcy equation)

(11-2)

where

= porosity (= volume fraction of gas phase);
= gas density;
= vector of pore velocity;
= sink/source;
= permeability tensor;
= dynamic viscosity of gas;

= gas pressure;
= gravitational vector;
= time;
= Cartesian coordinates (Eulerian spatial

coordinate vector);

Let us consider a homogeneous compressible gas the
Darcy equation (11-2) for the gas motion can be simpli-
fied to

(11-3)

Introducing (11-3) into (11-1) it yields the following
general model equation for the flow of a homogeneous
compressible gas in a porous medium

(11-4)

The first two terms of the left-hand side of (11-4) can
be expanded with respect to the pressure  as

∂
∂t
---- ερ( ) ∂

∂xi
------- ερvi( )+ ερQ=

εvi
kij
µ
----- ∂p

∂xj
------- ρgj– 

 –=

ε
ρ
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Q
kij
µ

p
gj
t
xi

εvi
kij
µ
----- ∂p

∂xj
-------–=

ε∂ρ
∂t
------ ρ∂ε

∂t
----- ∂

∂xi
-------

kijρ
µ

--------- ∂p
∂xj
------- 

 –+ ερQ=

p
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(11-5)

or

(11-6)

where

= gas compressibility;
= skeleton (matrix) compressibility;
= , volume fraction of solid;

We introduce the specific storativity  as

(11-7)

which is related to pressure changes. Finally the fol-
lowing model equation holds

(11-8)

written for the gas pressure as primary variable to be
determined.

Alternatively, if introducing the piezometric head
(potential)  as2

(11-9)

where

= reference density of gas;
= gravitational acceleration;
= elevation above a reference datum.

Since  and 
the equation (11-8) can be expressed by the piezomet-
ric head variable  and leads to

(11-10)

where

= , tensor of ’hydraulic’ conductivity;

= reference viscosity.

Preferring the variable  instead of the pressure  it
is no more convenient to use the pressure-related spe-
cific storativity . Instead the compressibility coeffi-
cients can be directly derived by  according to

(11-11)

which are the standard compressibility coefficients
used in FEFLOW2. It becomes clear that the -based
and the -based compressibilities are related as (cf.
also Bear and Verruijt1, p. 59)
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(11-12)

Introducing the -related specific storativity 

(11-13)

where we note that

(11-14)

we find from (11-10) the following model equation

(11-15)

to be solved for the piezometric head  of the gas. In
(11-15) we introduce the bulk sink/source rate 
defined as

(11-16)

which is the sink/source definition2 commonly used in
FEFLOW.

NNKO páãéäáÑáÅ~íáçåë

The general equations (11-8) and (11-15) for the
pressure  and the piezometric head  of a gas flow in
the porous media can be simplified for the following
assumptions:

• isothermal gas flow

• constant viscosity , and
• presence of a thermodynamically ideal gas.

The assumption of an ideal gas holds the following
relationship for the gas density :

(11-17)

where

= reference density of gas;
= reference pressure of gas.

Inserting (11-17) into (11-8) it yields

(11-18)

Using (11-17) it can be easily shown that

 (11-19)

It can be further assumed for a gas flow that the skele-
ton compressibility  is much smaller against the gas
compressibility , viz.,

•

Accordingly, we simplify the storativity term by using
(11-19) to

(11-20)
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and equation (11-18) yields

(11-21)

which is nonlinear.

An alternative formulation to (11-21) is often used
by introducing the square pressure . Since

 we obtain from (11-21)

(11-22)

which have to be solved for the square pressure  as a
new variable. Consider, however, equation (11-22) is
still nonlinear for transient and sink/source conditions.
Only for a steady-state gas flow and without the sink/
source term  a linear relationship results4

(11-23)

Analogously, the -based formulations can be easily
derived. On this occasion the piezometric head  can
be simplified for a gas flow as

(11-24)

because the density  of the gas is significantly
smaller than water. Using (11-24) and (11-17) with

,  we obtain from (11-18)

(11-25)

Otherwise, introducing the square potential  the
alternative formulation of (11-25) is

(11-26)

which becomes only linear for both steady-state and
divergence-free (without of sink/sources) conditions as
the Laplacian of , viz.,

(11-27)

NNKP rëáåÖ=cbcilt=Ñçê=pçäîáåÖ
íÜÉ=kçåäáåÉ~ê=~åÇ=iáåÉ~êJ
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FEFLOW2 solves balance equations for water flow
which can also be applicable directly to gas flows.
Since FEFLOW prefers the piezometric head variable

 as the primary unknown of the flow we find a direct
analogy of the nonlinear gas flow equation (11-25) to
the depth-integrated flow equations of unconfined
aquifers (cf. Eqs. (171) to (175) in2). Accordingly, for
2D problems the nonlinear gas model (11-25) can be
directly solved by FEFLOW. On the other hand, under
steady state and without sink/sources equation (11-27)
is linear in  and FEFLOW can immediately applied.
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Restrictions exist for the general case in solving
(11-25) (or (11-26)). However, it has been shown3 a lin-
earization of the gas flow equation is suited for a wide
range of practical applications. In the context of
FEFLOW, we consider a linearized version of the gov-
erning compressible gas equation (11-25) in the form

(11-28)

where the product  is approximated by the trans-
missivity , which can be linearized by the reference
potential , viz.,

. (11-29)

It is often sufficient to approximate the sink/source
expression of (11-28) by

(11-30)

and we finally solve the linearized -based gas flow
equation in the form

(11-31)

Alternatively, instead of linearizing (11-25) we can also
apply (11-26) to solve the gas flow equation by the 
variable. In doing so, we obtain from (11-26) the fol-
lowing linearized -based gas flow equation, viz.,

(11-32)

where a pseudo-storativity is introduced as

(11-33)

For steady-state flow conditions we can solve either the
-based form

(11-34)

or the -based form

(11-35)
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NOKN jçíáî~íáçå

It is well-know the solution of the nonlinear Rich-
ards equation for unsaturated flow require an increased
numerical effort and convergence difficulties can occur
at dry conditions3. Considering complex field situa-
tions and large three-dimensional (3D) applications the
computational burden can be extremely high. When
there are only interests in steady-state solutions, e.g.
capillary barrier problems3, the standard approach in
form any time-stepping strategy becomes very circum-
stantial and inefficient. For large and complicated prob-
lems the nonlinearity of the Richards equation
represents serious limitations and solution alternatives
are needed.

NOKO _~ëáÅ=_~ä~åÅÉ=bèì~íáçåë

The mass conservation equation of a fluid in an
unsaturated media is for steady-state conditions (sym-
bols are listed in the Appendix A ’Nomenclature’)

(12-1)

The fluid motion (fluid momentum balance) is
described by the Darcy equation written in the form

(12-2)

Inserting (12-2) into (12-1) the Richards equation for a
steady-state flow results

(12-3)

which has to be solved for . The steady Richards
equation (12-3) is nonlinear due to the dependence of
the relative hydraulic conductivity  on the pressure
head . For  an appropriate constitutive rela-
tionship is required.

NOKP bñéçåÉåíá~ä= i~ï= çÑ= oÉä~J
íáîÉ= eóÇê~ìäáÅ= `çåÇìÅíáîJ
áíó

There are different constitutive relationships of the
relative hydraulic conductivity . Most common∇ q⋅ Q=

q Kr ψ( )K ∇ψ 1 χ+( )e+[ ]–=

∇ KKr ψ( ) ∇ψ 1 χ+( )e+[ ]{ }⋅– Q=

ψ

Kr
ψ Kr ψ( )

Kr ψ( )
NO
píÉ~ÇóJëí~íÉ=äáåÉ~êáòÉÇ=oáÅÜ~êÇë=Éèì~íáçå=Ñçê=Ñ~ëí
ëçäìíáçå=çÑ=ìåë~íìê~íÉÇ=Ñäçï=ëóëíÉãë=EcrpvF
cbcilt=ö=ONV
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are the van Genuchten and the Brooks-Corey paramet-
ric models3. An other alternative is the exponential law
in the form

(12-4)

It can be shown that the exponential law (12-4) for the
relative hydraulic conductivity give results similar to
the standard van Genuchten and the Brooks-Corey
parametric models. It is to be emphasized that for
steady-state conditions no assumption is required for
the relationship between pressure head  and satura-
tion . In this context, the -values can be trans-
formed into saturations using any curve, like for
example the van Genuchten relationship. Accordingly,
mixed parametric models can be a promising alterna-
tive for solving complex unsaturated flow problems
under steady-state conditions, where for example the
exponential law is used for  and the van Genu-
chten law is used to find the saturations .

NOKQ qê~åëÑçêã~íáçå= çÑ= íÜÉ
píÉ~ÇóJëí~íÉ= oáÅÜ~êÇë
bèì~íáçå

Introducing the following Kirchhoff integral trans-
form related to the relative hydraulic conductivity in
the form

(12-5)

one gets with the exponential law (12-4)

(12-6)

From (12-6) it follows

(12-7)

and

(12-8)

Important note: The expression (12-7) is only valid if
assuming a constant -parameter. This restricts the
FUSY approach to problems with unsaturated parame-
ters  being spatially invariable.

Taking the Richards equation (12-3)

(12-9)

the transformation leads to a steady-state advection-
diffusion equation in the form

(12-10)

for

(12-11)

Kr ψ( ) eαψ      for    ψ 0<
1          for    ψ 0≥




=

ψ
s ψ

kçíáÅÉI= íÜÉ= crpv
~ééêç~ÅÜ= áë= êÉëíêáÅJ
íÉÇ= íç= ÜçãçÖÉJ

åÉçìë= ëçáäëI= ïÜÉêÉ= íÜÉ= J
é~ê~ãÉíÉê= ~ééÉ~êáåÖ= áå
ÉñéçåÉåíá~ä=ä~ï=Ñçê=íÜÉ=êÉä~J
íáîÉ=ÅçåÇìÅíáîáíó=ENOJQF=áë=~
Åçåëí~åíK

α Kr ψ( )
s ψ( )

F ψ( ) Kr τ( ) τd
∞–

ψ

∫=

F ψ( ) eατ τd
∞–

ψ

∫
1
α
---eατ

∞–

ψ 1
α
---eαψ 1

α
---Kr ψ( )= = = =

∇F eαψ∇ψ Kr ψ( )∇ψ= =

Kr ψ( ) αF=

α

α

∇ K Kr ψ( )∇ψ

∇F

⋅ K Kr ψ( )

αF

1 χ+( )e⋅+⋅– Q=

       

∇ K ∇F vF–⋅( )⋅– Q=

F 0 1
α
---, 

 ∈
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with the advective velocity vector

(12-12)

Notice, the advection-diffusion equation (12-10) is lin-
ear in  and represents a divergence-form type1. 

The solution of such a type of linear advection-dif-
fusion equation, in form of a steady-state linearized
Richards equation, can be performed very efficiently
and fast by using standard techniques. It is denoted by
the acronym FUSY (fast solution of unsaturated flow
systems).

After solving (12-10) for  in the domain  and
for given boundary conditions on  the pressure head

 can be simply obtained. Since

(12-13)

and

(12-14)

one uses

(12-15)

for the retransformation. As soon as  is known the
saturation  can be determined from any  curve.
Additionally, the hydraulic head (potential)  is given
by

(12-16)

and the resulting Darcy fluxes  are computed by

(12-17)

NOKR _çìåÇ~êó=`çåÇáíáçåë

For the domain  boundary conditions (BC) are
imposed on the four disjoint portions of the total
boundary :

(12-18a)

with

(12-18b)

NOKRKN råíê~åëÑçêãÉÇ=ÅçåÇáíáçåë

For the untransformed Richards-type model equa-
tion (12-3) boundary conditions are prescribed by the
following types2:

Dirichlet 1st kind BC for hydraulic head

(12-19)

Neumann flux-type 2nd kind BC

(12-20)

v αK 1 χ+( )e⋅–=

F

F Ω
∂Ω

ψ

αF eαψ=

ln αF( ) αψ=

ψ 1
α
---ln αF( )=

ψ
s s ψ( )

h

h ψ z+ 1
α
---ln αF( ) z+= =

q

q Kr ψ( )

eαψ

K ∇h χe+( )–=

  

Ω

∂Ω

∂Ω Γ1 Γ2 Γ3 Γ4∪ ∪ ∪=

Γ2 Γ2
a Γ2

b∪=

h h1= on Γ1

qn Kr ψ( )K ∇h χe+( )⋅[ ] n⋅–= on Γ2
a
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Neumann gradient-type 2nd kind BC
(a special type for a free drainage at diminishing pres-
sure gradient )

(12-21)

Cauchy 3rd kind BC

(12-22)

Seepage face BC’s
(represents a flux-constrained Dirichlet boundary-value
problem)

(12-23)

NOKRKO qê~åëÑçêãÉÇ=ÅçåÇáíáçåë

Boundary conditions for the governing advection-
diffusion equation (12-10) can be equivalently found
for (12-19), (12-20), (12-21), (12-22) and (12-23) when
written by the new  variable:

Dirichlet 1st kind BC for hydraulic head

(12-24)

Neumann flux-type 2nd kind BC

(12-25)

Neumann gradient-type 2nd kind BC
(free drainage at diminishing pressure gradient, i.e.,

)

(12-26)

Cauchy 3rd kind BC

(12-27)

which represents a nonlinear expression in .

Seepage face BC’s

(12-28)
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^ééÉåÇáñ=^

kçãÉåÅä~íìêÉ

In the above the symbols have the following meaning:

Latin symbols

= gravitational unit vector, ;
= transform function, ;
= , hydraulic (piezometric)

head, ;
= prescribed boundary values for ,

;
= relative hydraulic conductivity

( ,  if saturated at
), ;

= tensor of hydraulic conductivity for
the saturated medium (anisotropy),

;
= normal unit vector (positive

outward);
= fluid mass sink/source, ;
= Darcy flux vector, ;
= normal flux on a boundary (directed

positive outward), ;
= saturation, ( ,  if

medium is saturated), ;

= elevation above a reference datum,
;

= advective velocity vector, ;

Greek symbols

= sorptive number, ;
= boundary;
= total boundary;
= porosity (= volume fraction of fluid

phase), ;
= integration variable, ;
= transfer coefficient, ;
= buoyancy coefficient including fluid

density effects, ;
= pressure head ;
= domain;
= Nabla (vector) operator, ;

Subscripts

elemental;
nodal or spatial indices;
reference value;

Superscripts

fluid (water) phase;
solid phase;

e 1( )
F L( )
h ψ z+

L( )
h1 h2, h

L( )
Kr s( )

0 Kr 1≤< Kr 1=
s 1= 1( )

K

LT 1–( )
n

Q T 1–( )
q LT 1–( )
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1( )

z
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α L 1–( )
Γ
∂Ω
ε
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τ L( )
Φ T 1–( )
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1( )
ψ L( )
Ω
∇ L 1–( )

e
i j k, ,
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NPKN fåíêçÇìÅíáçå

Both in solving the nonlinear Richards equation and
the advective-dispersive transport equations for mass
and heat the advective part often becomes dominant
and classic numerical techniques can completely fail.
Conventionally, for multi-dimensional transport prob-
lems upwind techniques such as streamline-upwind
Petrov-Galerkin (SUPG) or scalar upstream weighting
are standard to stabilize the solutions. While the classic
artificial diffusion method often suffers in a consider-
able smearing of steep fronts the SUPG formulation
cannot preclude the presence of overshoots and under-
shoots in the vicinity of sharp gradients10. More
recently, nonlinear shock-capturing techniques have
been developed and successfully applied5. Otherwise,
for unsaturated problems upstream weighting tech-
niques can be helpful to damp out wiggles in the satu-
ration profiles6. Unfortunately, most of these
established techniques reveal over-diffusive properties
and there is a further demand for alternative higher-
order upwind techniques with reduced spurious numer-
ical dispersion.

The Petrov-Galerkin least square (PGLS) finite-ele-
ment method appears as a promising technique for
tackling advective-dominant flow and transport pro-
cesses at variably saturated conditions. Basic work of
the PGLS was presented by Nguyen and Reynen15. In
the context of the finite-element method (FEM) is
based on a Petrov-Galerkin weak formulation where a
’modified’ weighting function is derived from the
least-squares finite element concept. This procedure is
equivalent to the methods developed by Hughes and
Brooks10 and by Kelly et al.12 where an artificial diffu-
sion is added to the physical parameter. However, in
this method the artificial diffusion can be derived
directly from the least-squares finite element concept
and requires no ’free’ parameter. PGLS is recognized
as a member of more general stabilized finite element
methods as described by Codina3.
NP
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Rather independently, a more general solution
approach which is comparable to the PGLS technique
as proposed by Nguyen and Reynen15 has been devel-
oped by König13 and Wendland18. König13 used the
operator split (OS) technique to solve the transport
equations in a two-pass strategy, where the separate
equations for the diffusive and the advective part are
solved successively. Wendland18 enhanced the OS tech-
nique by introducing a powerful one-pass approach
termed as symmetric streamline stabilization (S3),
where the diffusive and advective parts are re-assem-
bled in one symmetric matrix system. A detailed dis-
cussion of the S3 approach can be found in
Wendland18. In contrast to Nguyen and Reynen’s PGLS
strategy15 the S3 strategy provides a more generalized
approach with respect to temporal discretization tech-
niques, where different time stepping schemes, includ-
ing adaptive predictor-corrector strategies typically
used in FEFLOW4 can be easily covered.

Let us start with the following mass transport equa-
tion

(13-1)

where  is the porosity,  is the adsorption,  is the
pore velocity vector,  is the ’diffusion’ tensor,  is

the reaction and  is a sink/source term,

which can be written in the operator-splitted form

(13-2)

with

(13-3a)

(13-3b)

Consider the solution  within the finite time
interval , where  denotes the variable
timestep length and  indicates the time plane. The
unknown function  is defined as

(13-4)

at the old time plane, and

(13-5)

at the new time plane. Furthermore, we introduce a
time weighting factor  in such a form

(13-6)

In specifying  we obtain different time discretization
schemes, viz., 

ε κ+( )C· εv ∇C ∇ D ∇C⋅( )  λC+⋅–⋅+ f=

ε κ v
D λ

f

ε κ+( )

Rd

C· L1 L2+( )C+ f=

  

L1 ∇ D ∇⋅( ) λ+⋅–=

L2 εv ∇⋅=

C t( )
tn tn ∆tn+,( ) ∆tn

n
C t( )

Cn C tn( )=

Cn 1+ C tn ∆tn+( )=

0 θ 1≤ ≤( )

C tn θ∆tn+( ) θC tn ∆tn+( ) 1 θ–( )C tn( )+=

Cn θ+ θCn 1+ 1 θ–( )Cn+= 
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(13-7)

Practically, from reasons of numerical stability we
are only interested in semi-implicit and fully implicit
schemes that means .

The time derivatives are given as

(13-8)

for the backward Euler (BE) fully implicit scheme and

(13-9)

for the trapezoid rule (TR) scheme. The TR expression
can simplified if using a forward difference approxima-
tion for  which leads to the same
expression of Eq. (13-8) for  which is used for the
2nd order accurate Crank-Nicolson approximation.

Now, we split the solution  into the diffusive and
the advective part such that

(13-10)

and

(13-11)

represents the diffusive system while

(13-12)

is the purely advective system. Summing (13-11) and
(13-12) we realize the original balance equation (13-2).
The idea of the operator splitting technique is in
approximating the diffusive and advective equations
(13-11) and (13-12), respectively, in a separate manner.
After that the total discrete balance equation is
obtained by the assembly of these two parts. In doing
this, we assume that the initial conditions for the diffu-
sive and advective variables are

(13-13)

It is to be noted that the diffusive solution  can be
considered as an intermediate solution which repre-
sents a temporally discrete interpolation between the
old and the new time level as evidenced in Fig. 13.1.

θ 0        explicit scheme=
θ 1 2    trapezoid rule⁄=
θ 1         implicit scheme= 






1 2⁄ θ 1≤ ≤

C·
n θ+

C·
n 1+ Cn 1+ Cn–

∆tn
--------------------------= =

C·
n 1+ 2

∆tn
-------- Cn 1+ Cn–( ) C·

n
–=

C·
n

Cn 1+ Cn–( ) ∆tn⁄=
C·

n 1+

C

C C1 C2+=

εC· 1 κC· L1C+ + f=

ε C· C· 1–( ) L2C+ 0=

t tn= C1
n Cn= C2

n 0= C· 2
n

0=

C1

Figure 13.1 Temporally discrete interpolation of the
intermediate solution .C1

L1 L2,

ttn tC1 tn+1
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In the context of the FEM the unknown variables
 are replaced by a continuous approximation that

assumes the separability of space and time, thus

(13-14)

where the subscript I = 1, ..., M denotes the nodal indi-
ces and i = 1, ..., D,  represents the spatial
indices.

For the diffusive part the standard Galerkin approxi-
mation is used. Thus, the residual  of Eq. (13-11) as

(13-15)

yields the following weak formulation

(13-16)

Using the trial space expression (13-14) the following
global matrix system results

(13-17)

with its components written in indicial notation

(13-18a)

(13-18b)

(13-18c)

(13-18d)

where the subscripts I,J = 1, ..., M denote the nodal
indices and i,j = 1, ..., D represent the spatial indices.
Furthermore,  corresponds to the outer diffusive flux
on the boundary .

The time discretization of Eq. (13-17) leads to the
following expression

(13-19)

With (13-13) we get the solution of the intermediate
(diffusive) part  at the new time plane n+1 as

(13-20)

or
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C1 xi t,( ) NI xi( )C1I t( )
I

∑≈






D 2 3,( )∈

ℜ

ℜ εC· 1 κC· L1C f–+ +=

NIℜ Ωd
Ω
∫ 0=

NI εC· 1 κC· L1C f–+ +( ) Ωd
Ω
∫ 0=









M C· 1 S C·⋅ B C⋅+ +⋅ P=

MIJ εNINJ Ωd
Ω
∫=

SIJ κNINJ Ωd
Ω
∫=

BIJ
∂NI
∂xi
---------Dij

∂NJ
∂xj
--------- Ω λNINJ Ωd

Ω
∫+d

Ω
∫=

PI NIf Ω NIqc Γd
Γ
∫–d

Ω
∫=

qc
Γ

M C· 1
n θ+ S C· 1

n θ+ S C· 2
n

⋅+⋅ B C1
n θ+

B C2
n

⋅+

⋅+ +⋅

Pn θ+=

C1

M S+( )
C1

n 1+ Cn–
∆tn

---------------------------
 
 
 

θB C1
n 1+

1 θ–( )B Cn⋅+

⋅+⋅

Pn θ+=
OOU=ö=tÜáíÉ=m~éÉêë=J=sçäK=f
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(13-21)

For the predictor-corrector strategy based on the BE
and TR schemes we obtain alternatively

(13-22)

with

(13-23)

NPKOKP ^ééêçñáã~íáçå=çÑ=íÜÉ=~ÇîÉÅíáîÉ
é~êí

The residual of the advective part (13-12) in form of

(13-24)

will be handled by the least-square method

(13-25)

This is equivalent to the minimization process in using
the weighting (test) function in form of

(13-26)

for the -based time marching schemes and

(13-27)

for the BE and TR predictor-corrector approximations.

The weak formulation yields

(13-28)

and is exemplified for the -based time marching
scheme as

(13-29)

where the residual is weighted by the test function con-
sisting of two parts as displayed in Fig. 13.2.

M S+( )
∆tn

-------------------- θB+ C1
n 1+

M S+( )
∆tn

-------------------- 1 θ–( )B– Cn Pn θ++=

σ M S+( )
∆tn

------------------------ B+ C1
n 1+

M S+( ) σ
∆tn
--------Cn σ 1–( )C· n

+ Pn 1++⋅=

σ 1
θ
---= θ 1

2
---≥

ℑ ε C· C· 1–( ) L2C+=

ℑ ε C· C· 1–( ) εv ∇C⋅+= 



∂
∂CI
--------- ℑ ℑ⋅( ) Ωd

Ω
∫ 0=

ψI
∂ℑ
∂CI
---------

εNI
∆tn
-------- θεv ∇NI⋅+= =

θ

ψI
∂ℑ
∂CI
---------

σεNI
∆tn

------------ εv ∇NI⋅+= =

ψIℑ Ωd
Ω
∫ 0=

θ

NI θ∆tnv ∇NI⋅+( ) ε C· C· 1–( ) εv ∇C⋅+[ ] Ωd
Ω
∫ 0=

Figure 13.2 Least-square test function of the operator split
(modified from 13).

+ =

NI θ∆tnv ∇NI⋅ LS upwind weighting
cbcilt=ö=OOV
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The least-square weak statement (13-29) leads to
the following matrix system

(13-30)

with the components

(13-31a)

(13-31b)

(13-31c)

Analogously, for the BE and TR predictor-corrector
technique we have to apply

(13-32)

or with (13-23)

(13-33)

which is the same as for -based time marching
scheme which gives the matrix system (13-30).

The time discretization of Eq. (13-30) leads to the
following expression

(13-34)

We get the solution of the advective part at the new
time plane n+1 as

(13-35)

and finally

(13-36)

Regarding the predictor-corrector strategy based on
the BE and TR schemes if taking

(13-37)

and using (13-30) we obtain alternatively for the
advective part the following matrix system

(13-38)

M θ∆tnV+( ) C· K θT+( ) C⋅+⋅

M θ∆tnV+( ) C· 1⋅=

VIJ ε v ∇NI⋅( )NJ Ωd
Ω
∫=

KIJ εNI v ∇NJ⋅( ) Ωd
Ω
∫=

TIJ ∆tnε v ∇NI⋅( ) v ∇NJ⋅( )⋅ Ωd
Ω
∫=

σNI ∆tnv ∇NI⋅+( ) ε C· C· 1–( ) εv ∇C⋅+[ ] Ωd
Ω
∫ 0=

NI θ∆tnv ∇NI⋅+( ) ε C· C· 1–( ) εv ∇C⋅+[ ] Ωd
Ω
∫ 0=

θ

M θ∆tnV+( ) C·
n θ+

K θT+( ) Cn θ+
⋅+⋅

M θ∆tnV+( ) C· 1
n θ+

⋅=

M θ∆tnV+( ) Cn 1+ Cn–
∆tn

--------------------------
 
 
 

θ K θT+( ) Cn 1+ 1 θ–( ) K θT+( ) Cn⋅+⋅+⋅  =

M θ∆ tnV+( )
C1

n 1+ Cn–
∆tn

--------------------------
 
 
 

⋅=

M
∆tn
-------- θ V K θT+ +( )+ Cn 1+

M
∆tn
-------- θV+ 

  C1
n 1+ 1 θ–( ) K θT+( ) Cn

⋅–=

C· n 1+ σ
∆tn
-------- Cn 1+ Cn–( ) σ 1–( )C· n

–=

C· 1
n 1+ σ

∆tn
-------- C1

n 1+ Cn–( ) σ 1–( )C·
n

–=








σM
∆tn
--------- V K 1

σ
---T+ + + 

  Cn 1+ σM
∆tn
--------- V+ 

  C1
n 1+=
OPM=ö=tÜáíÉ=m~éÉêë=J=sçäK=f
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NPKOKQ ^ëëÉãÄäó= çÑ= íÜÉ= ÇáÑÑìëáîÉ= ~åÇ
~ÇîÉÅíáîÉ=é~êíë

Finally, to obtain the matrix system for the total bal-
ance equation (13-1) we have to add the diffusive and
advective parts.
For the -based time marching scheme the summation
of (13-36) and (13-21) yields

(13-39)

The term  can be eliminated from (13-39). The
remaining terms correlated with the intermediate solu-
tion  can be transformed in the following way18.
All terms with  on the left-hand side are replaced
by , while such terms on the right-hand side are
substituted by . In doing so, the following matrix
system results

(13-40)

or

(13-41)

with

(13-42)

where  is the retardation factor and 
is the Darcy velocity vector.

Analogously for the BE and TR predictor-corrector
schemes we add (13-38) and (13-22)

(13-43)

which gives

(13-44)

θ

M
∆tn
-------- θ V K θT+ +( )+ Cn 1+ M S+( )

∆ tn
--------------------- θB+ C1

n 1++  =

M
∆ tn
-------- θV+ 

  C1
n 1+ 1 θ–( ) K θT+( ) Cn M S+( )

∆ tn
--------------------- 1 θ–( )B– Cn Pn θ++ +⋅–=

M
∆tn
--------C1

n 1+

C1
n 1+

C1
n 1+

Cn 1+

Cn

M S+( )
∆tn

-------------------- θ B V K θT+ + +( )+ Cn 1+  =

M S+( )
∆tn

-------------------- 1 θ–( ) B K θT+ +( )– θV+ Cn Pn θ++=

O
∆tn
-------- θ B V K θT+ + +( )+ Cn 1+

O
∆tn
-------- 1 θ–( ) B K θT+ +( )– θV+ Cn Pn θ++=

OIJ RdNINJ Ωd
Ω
∫=

BIJ
∂NI
∂xi
---------Dij

∂NJ
∂xj
--------- Ω λNINJ Ωd

Ω
∫+d

Ω
∫=

VIJ q ∇NI⋅( )NJ Ωd
Ω
∫=

KIJ NI q ∇NJ⋅( ) Ωd
Ω
∫=

TIJ
∆tn
ε

-------- q ∇NI⋅( ) q ∇NJ⋅( )⋅ Ωd
Ω
∫=

PI NIf Ω NIqc Γd
Γ
∫–d

Ω
∫=























Rd ε κ+= q εv=

σM
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σ
---T+ + + 

  Cn 1+ σ M S+( )
∆tn

------------------------- B+ C1
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σM
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---------- V+ 

  C1
n 1+ M S+( ) σ
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--------Cn σ 1–( )C· n

+ Pn 1++⋅+=

σO
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σ
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+ Pn θ++⋅+=
cbcilt=ö=OPN



NPK=qÜÉ=mÉíêçîJd~äÉêâáå=äÉ~ëí=ëèì~êÉ=ãÉíÜçÇ=EmdipF
The final matrix systems (13-41) and (13-44) for the
-based time marching scheme and the BE and TR

predictor-corrector scheme, respectively, are symmet-
ric and positive definite. This results from the fact that
the advective matrices  and  form a symmetric
contribution as the sum  because  is
the transpose as easily seen from (13-42). The symmet-
ric term  can be interpreted as an additional term of
artificial diffusion. This naturally arises from the least-
square weighting procedure (13-25).

NPKOKR oÉã~êâë= çå= íÜÉ= ~ééäáÅ~íáçå= çÑ
çéÉê~íçê= ëéäáí= íç= íÜÉ= ÇáîÉêÖÉåÅÉ= Ñçêã
çÑ=íÜÉ=íê~åëéçêí=Éèì~íáçå

FEFLOW4 differs between the convective and the
divergence forms in solving the governing transport
equations. The advantage of the divergence form is in
prescribing a total (advective plus diffusive) boundary
flux on  instead of imposing only the diffusive flux

 (cf. Eq. (13-18d) on the boundary . The balance
equation (13-1) represents a convective form which is
standard, where the continuity equation is explicitly
used to find a gradient-type relationship  for the
advective term. But basically, the balance equation pos-
sesses a divergence expression . It reads

(13-45)

Then, the splitted advective part yields

(13-46)

with the advective operator

(13-47)

The weak statement of the least-square weighting
method is then

(13-48)

which leads to the following matrix system

(13-49)

with the components

(13-50a)

(13-50b)

(13-50c)

where we transformed the partial advective matrix
 by using the divergence theorem according to

(13-51)

to get the required description of the advective outer
border flux .

θ

V K
V K+( ) K VT=

T

Γ
qc Γ

εv ∇C⋅

∇ εvC( )⋅

ε κ+( )C· ∇ εvC( )⋅ ∇ D ∇C⋅( )  λC+⋅–+ f=

ε C· C· 1–( ) L2C+ 0=

L2 εv ∇ ∇ εv⋅( )+⋅=

NI θ∆ tn
1
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Ω
∫ 0=

M θ∆tnV∗+( ) C· K∗ θT∗+( ) C⋅+⋅

M θ∆tnV∗+( ) C· 1⋅=

VIJ∗ ε v ∇NI⋅( )NJ Ω NINJ∇ εv( )⋅ Ωd
Ω
∫+d

Ω
∫=

KIJ∗ εvNJ ∇NI Ω NIqc
a Γd

Γ
∫+d⋅

Ω
∫–=

TIJ∗ ∆tn
1
ε
--- ∇ εvNI( )⋅[ ] ∇ εvNJ( )⋅[ ] Ωd⋅

Ω
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KIJ∗

NI∇ εvC( ) Ωd⋅
Ω
∫ ∇ NIεvC( ) Ωd

εvC ∇NI Ωd⋅
Ω
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⋅
Ω
∫

NIqc
a Γ εvC ∇NI Ωd⋅

Ω
∫–d

Γ
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=
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OPO=ö=tÜáíÉ=m~éÉêë=J=sçäK=f
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The time discretization of (13-49) for the diver-
gence form of the splitted advective part yields finally 

(13-52)

Inspecting Eq. (13-52) with its matrix components (13-
50a) to (13-50c) it reveals the following. The symmet-
ric property of the matrix system is lost because  is
no more a transpose of . Furthermore, the evalua-
tion of the divergence expressions  in (13-50a)
and  in (13-50c) causes difficulties if the
flow is not solenoidal (divergence-free) at the presence
of compression and sink/sources of fluid. As the sum, it
becomes apparent that the least-square technique is
rather inappropriate for the divergence form of the
transport equation.

NPKP fåíÉÖê~íáçå= çÑ= mdip= áåíç
íÜÉ= cbcilt= páãìä~íáçå
m~Åâ~ÖÉ

NPKPKN dÉåÉê~ä

In FEFLOW various numerical schemes are avail-
able for flow and transport processes in variably satu-
rated media. Regarding the 2D and 3D transport
equations for solute and heat it covers:

    (1)   GFEM-Bubnov-Galerkin FEM (GFEM)
    (2)   SU-Petrov-Galerkin streamline upwind

    (3)   FU-Full upwind technique
    (4)   SC-Shock-capturing technique.

With respect to the unsaturated flow equations in
two and three dimensions FEFLOW is currently capa-
ble of performing

• Standard h-based Richards equation form via
either Picard or Newton iteration;

• Mixed -based Richards equation by using
either a modified Picard scheme or the Newton
method;

• Primary variable switching technique with a full
Newton method;

• Upstream weighting based on a Gauss-point-
related evaluation technique for the relative con-
ductivity.

The PGLS scheme for both transport and unsaturated
flow processes has been developed and implemented as
the fifth option of numerical schemes in FEFLOW, viz.,

    (5)    PGLS-Petrov-Galerkin least square method.

The main advantages of the PGLS can be summarized
as follows:

• It is compatible to the existing techniques within
the finite element context.

• It represents a higher-order upwind scheme pro-
viding an improved temporal and spatial accuracy.

• The scheme provides a built-in upwind character-
istics; accordingly, no additional ’free’ parameters
have to be specified by the user.

• It leads to symmetric matrix systems, which can
be solved effectively and fast. Compared to the

M
∆tn
-------- θ V∗ K∗ θT∗+ +( )+ Cn 1+

M
∆tn
-------- θV∗+ 

  C1
n 1+ 1 θ–( ) K∗ θT∗+( ) Cn⋅–=

K∗

V∗

∇ εv( )⋅
∇ εvNI( )⋅

ψ s–
cbcilt=ö=OPP
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conventional unsymmetric approaches the PGLS
is a cost-effective variant with a significantly
reduced storage demand.

• It can be simply applied both to the transport
equations and to the unsaturated flow equations.

NPKPKO oÉëìã¨=çÑ=Ä~ëáÅ=Éèì~íáçåë

The following nonlinear system is solved in two and
three dimensions (symbols are listed in Appendix A):

(13-53)

(13-54)

(13-55)

(13-56)

with the definitions and constitutive relationships

(13-57a)

(13-57b)

(13-57c)

(13-57d)

(13-57e)

(13-57f)

(13-57g)

(13-57h)

(13-57i)

To solve the nonlinear equations (13-53) to (13-56)
for , , , , and  under unsaturated-saturated
conditions constitutive relationships are additionally
required for the saturation  as a function of the pres-
sure (capillary) head , with its inverse, the pressure
head  as a function of the saturation , and for the
relative hydraulic conductivity  as a function of the
pressure head  or the saturation . FEFLOW pro-
vides the van Genuchten-Mualem, the Brooks-Corey,
the Haverkamp, the exponential and the linear paramet-
ric models.

The above equations (13-53) to (13-56) are dis-
cretized by the FEM using bilinear or biquadratic ele-
ments for 2D, and prismatic pentahedral trilinear or
hexahedral trilinear and triquadratic elements for 3D

So s ψ( )∂ψ
∂t
------- ε∂s ψ( )

∂t
-------------- ∇ q⋅+ +⋅ Qh=

q Kr s( )Kfµ ∇ψ 1
ρ ρo–

ρo
---------------+ 

  e+–=

s ψ( )εRd C( )∂C
∂t
------- q ∇C⋅+

 ∇ εs ψ( )DdI D+( ) ∇C⋅[ ]⋅–

 s ψ( )εR C( )ϑ Qh+[ ]C+ s ψ( )QC=

s ψ( )ερcf 1 ε–( )ρscs+[ ]∂T
∂t
------ ρcfq ∇T⋅+

 ∇ Λ 1 ε–( )λsI+( ) ∇T⋅[ ] ⋅–

 ρcfQh T To–( )+ QT ψ( )=

h p
ρog
--------- z+ ψ z+= =

So εγ 1 ε–( )φ+=

K
kρog

µ0
------------=

fµ
µ0

µ C T,( )
-------------------=

ρ ρo 1 α C Co–( ) β T To–( )–+[ ]=

R C( ) 1 1 ε–( )
ε

----------------χ C( )+=

Rd C( ) 1 1 ε–( )
ε

----------------∂ χ C( ) C⋅[ ]
∂C

-----------------------------+= 





D βL βT–( )q q⊗
q

------------- βT q I+=

Λ ρcfD εs ψ( )λfI+=

QT ψ( ) s ψ( )εQT
f 1 ε–( )QT

s+=

ψ s q C T

s
ψ

ψ s
Kr

ψ s
OPQ=ö=tÜáíÉ=m~éÉêë=J=sçäK=f
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(Fig. 13.3).

Finally, it yields the following coupled matrix system:

(13-58)

where , q, C and T represent the resulting
vectors of nodal hydraulic head (alternatively, pressure
head or saturation), Darcy fluxes, contaminant concen-
tration and temperature, respectively. The superposed
dot means differentiation with respect to time t. The
matrices S, A, O, P and U are symmetric and sparse,
while the sparse D and L matrices are only symmetric
for the PGLS scheme. The remaining vectors F, B, R
and W encompass the right-hand sides (RHS) of eqns
(13-53) to (13-56), respectively. The main functional
dependence is shown in parenthesis.

REMARK 1. The matrices D and L are unsymmetric for

the standard schemes such as Bubnov-Galerkin
(GFEM), streamline upwinding (SUPG) and shock
capturing (SC). The matrix S also becomes unsymmet-
ric for the primary variable switching technique6

applied to unsaturated flow problems based on the
Newton iteration technique.

The most remarkable features of the PGLS scheme
applied to the system (13-58) are summarized for the
mass transport equation as follows:
In using the different time discretization schemes in
form of both (a) the -weighted time marching with
fixed step sizes and (b) the predictor-corrector time
stepping of first and second order in time the matrix
equation

(13-59)

leads to the temporally discretized matrix relationship
for the -weighted scheme as

(13-60)

and for the predictor-corrector scheme as

(13-61)

with

2D 3D

Figure 13.3 FEFLOW’s element types.

Oh· S h C T, ,( )h+ F h q C C· T T·, , , , ,( )=
Aq B h C T, ,( )=

P C( )C· D q C,( )C+ R C( )=

UT· L q T,( )T+ W T( )= 











h h ψ s,( )=

θ

P C( )C· D q C,( )C+ R C( )=

θ

P
∆tn
-------- θ B V K θG+ + +( )+ Cn 1+

P
∆tn
-------- 1 θ–( ) B K θG+ +( )– θV+ Cn Rn θ++=

σP
∆tn
-------- B V K 1

σ
---G+ + ++ Cn 1+

VCn P σ
∆tn
--------Cn

σ 1–( )C·
n

+ Rn 1++⋅+=
cbcilt=ö=OPR
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(13-62)

The individual matrices for the PGLS scheme of (13-
60) and (13-61) are given by

(13-63)

REMARK 2. The PGLS damping matrix G in (13-63) is
strongly related to the pore velocity . For dry
unsaturated problems with  the matrix G
becomes singular.

REMARK 3. The used time marching schemes are sec-
ond order accurate in time for  (Crank Nicol-
son scheme) and  (Adams-Bashforth AB/TR
predictor-corrector). They have a first order accuracy
for  (fully implicit scheme) and  (forward
Euler/backward Euler FE/BE predictor-corrector).

REMARK 4. The PGLS symmetrization is caused by
the fact that the advective matrices  and  form a
symmetric contribution as the sum  because

 is the transpose. This is only attainable for a
transport equation which has been written in the so-
called convective form1. Divergence forms of transport
equations cannot by handled by the PGLS scheme as
derived in Section 13.2.5.

REMARK 5. The right-hand side of the matrix system
(13-60) or (13-61) requires the assembly of the advec-
tive matrix  which is unsymmetric. As the conse-
quence, quadrature rules common in the FEM to build
up the element matrices have to be performed over all
rows and columns of the submatrices, at least for the
submatrix .

REMARK 6. A comparison of the streamline upwind
Petrov-Galerkin (SUPG) scheme with the PGLS tech-
nique leads to the following: The ’balancing tensor dif-
fusivity’ of the SUPG is expressed by the streamline
upwind term

(13-64)

where  is the numerical (longitudinal) dispersivity
as a free parameter which can be estimated as 
and  for linear and quadratic finite elements,
respectively. If comparing (13-64) of the SUPG with
the PGLS damping matrix G in (13-63) it is obvious
that both forms of the upwinding terms become identi-
cal if we set

σ 1
θ
---= θ 1

2
---≥

PIJ s ψ( )RdNINJ Ωd
Ω
∫=

BIJ ∇NI εs ψ( )Ddδij D+[ ] ∇NJ⋅{ } Ωd⋅
Ω
∫=

 s ψ( )R C( )ϑ Qh+[ ]NINJ Ωd
Ω
∫+

VIJ q ∇NI⋅( )NJ Ωd
Ω
∫=

KIJ NI q ∇NJ⋅( ) Ωd
Ω
∫=

GIJ
∆tn

εs ψ( )
-------------- q ∇NI⋅( ) q ∇NJ⋅( )⋅ Ωd

Ω
∫=

RI NIs ψ( )QC Ω NIqc Γd
Γ
∫–d

Ω
∫=



























q εs ψ( )[ ]⁄
s ψ( ) 0→

θ 1 2⁄=
σ 2=

θ 1= σ 1=
1. see Chapter 6: About the difference between the con-
vective form and the divergence form of the transport equa-
tion, p. 121 and following.

V K
V K+( )

K VT=

V

V

∇NI βnumq q⊗
q

------------- ∇NJ⋅ 
  Ωd⋅

Ω
∫

βnum

∆l 2⁄
∆l 4⁄
OPS=ö=tÜáíÉ=m~éÉêë=J=sçäK=f
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It reveals the upwind characteristic of the PGLS is
quite similar to a streamline upwind technique. We
note an equivalent damping parameter  for the
PGLS becomes dependent on the time step size and the
measure of the pore velocity according to .

NPKQ _ÉåÅÜã~êâë

NPKQKN qïçJÇáãÉåëáçå~ä= ~ÇîÉÅíáîÉJ
Ççãáå~åí= íê~åëéçêí= ~í= ~= ÖêáÇJé~ê~ääÉä
Ñäçï

This example has been introduced by Wendland18 to
compare the symmetric streamline stabilization
(termed as S3-scheme) to analytical results, to the oper-
ator split technique proposed by König13 (termed as
OS-scheme) and to the symmetric scheme developed
by Leismann and Frind14 (termed as L-scheme), which
handles the advective term explicitly. The problem is
described in Fig. 13.4.

Introducing the grid Peclet number  as

(13-66)

and the Courant number  as

(13-67)

we study three cases as listed in Table 13.1. Wend-

land’s results18 for the case 1 are presented in Fig 13.5.
The results of the present PGLS scheme compared with
the standard Galerkin-FEM and the Crank-Nicolson
time stepping scheme are displayed in Fig. 13.6 for the
case 1. As seen in Figs. 13.5 and 13.6 there are no
remarkable differences between the different schemes
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and in comparison with the exact (analytical) solution.

Table 13.1 Simulation parameter used 2D advection-dispersion problem at grid-parallel flow

Case [s] [m] [m] [m] [m]
Pg Co

1 1.0 2.0 0.2 2.0 2.0 1.0 0.5

2 2.0 0.02 0.002 2.0 2.0 100.0 1.0

3 2.0 0.02 0.002 0.5 0.5 25.0 4.0

Figure 13.4 The 2D advection-dispersion problem with grid-parallel flow (from18).

∆t βL βT ∆x ∆y
OPU=ö=tÜáíÉ=m~éÉêë=J=sçäK=f



NPKQ=_ÉåÅÜã~êâë
The case 2 represents an advective-dominant prob-
lem with a high grid-Peclet number of 100. Wendland18

found the solutions as shown in Fig. 13.7. As seen its
results are not satisfactory compared to the analytical
solution. The L- and the OS-schemes reveal both oscil-
latory and overdiffusive solutions. Even false cross-
damping effects are apparent. Wendland’s S3-solutions
improve the situation somewhat (see Fig. 13.7), how-
ever, wiggles and numerical dispersion effects, obvi-
ously due to the fully implicit approximation, appear.

The present PGLS strategy obtains better solutions
which are exhibited in Fig. 13.8. The PGLS with the
Crank-Nicolson scheme (Fig. 13.8a) echoes the best-

Figure 13.5 Distribution of concentration at 50 s computed
by Wendland18  for the case 1.

Figure 13.6 Distribution of concentration at 50 s com-
puted by a) the PGLS and b) the standard Galerkin-FEM
for the case 1 with using the Crank-Nicolson time step-
ping scheme .θ 1 2⁄=
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sharpest solutions compared to the implicit PGLS (Fig.
13.8b) and the standard SUPG with Crank-Nicolson
(Fig. 13.8c). However, the concentration distribution
for the Crank-Nicolson PGLS is not completely wig-
gle-free (Fig. 13.8a). On the positive side, unlike the L-
and the OS-strategies the present schemes do not suffer
from spurious cross-dispersion effects.

Figure 13.7 Distribution of concentration at 50 s computed
by Wendland18  for the case 2.
OQM=ö=tÜáíÉ=m~éÉêë=J=sçäK=f
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The case 3 covers solutions of a refined grid. Wend-
land’s results18 are shown in Fig. 13.9. A certain reduc-
tion of the influence of numerical dispersion could be
achieved (cf. Figs. 13.9 and 13.5). The results of the
present PGLS technique are displayed in Fig. 13.10 for

the case 3. For the Crank-Nicolson PGLS (Fig. 13.10a)
wiggles in the concentration distribution are revealed.
On the other hand, a fully implicit PGLS (Fig. 13.10b)
becomes free of oscillations, but, smearing of the con-
centration indicates false numerical dispersion which is
mainly caused by the implicit technique of first order
accuracy in time. Unlike this, the standard SUPG tech-
nique with a Crank-Nicolson obtains reasonable results
without any wiggles and an acceptable amount of
damping (Fig. 13.10c).

Figure 13.8 Distribution of concentration at 50 s com-
puted by a) the PGLS with the Crank-Nicolson scheme,
b) PGLS scheme with the fully implicit time marching,
and c) the standard streamline upwind (SUPG) with the
Crank-Nicolson scheme for the case 2.
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Figure 13.9 Distribution of concentration at 50 s computed
by Wendland18  for the case 3.

Figure 13.10 Distribution of concentration at 50 s com-
puted by a) the PGLS with the Crank-Nicolson scheme,
b) PGLS scheme with the fully implicit time marching,
and c) the standard streamline upwind (SUPG) with the
Crank-Nicolson scheme for the case 3.
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To benchmark the PGLS technique for more general
(non-parallel) flow conditions we consider the example
which was also studied by Wendland18. The problem is
described in Fig 13.11. With the flow boundary condi-
tions an oblique flow in induced in the domain. The
conductivity is assumed to  m/s. Two different
cases are considered as listed in Table 13.1.

Wendland’s results18 for the case 4 are shown in Fig.
13.12, where the standard Ritz-Galerkin method
(termed as RG), the symmetric streamline stabilization
(termed as S3-scheme), the operator split technique
(termed as OS-scheme) and the symmetric scheme
developed by Leismann and Frind14 (termed as L-
scheme) are presented. As seen in Fig. 13.12 Wend-

land’s results are rather mixed. Compared to the more
accurate RG scheme its S3 solutions reveal an
increased amount of numerical dispersion. The OS and
L schemes are also depart from the RG results. We
compare these results with our findings as shown in
Fig. 13.13. There, we display three PGLS applications:
one is the Crank-Nicolson PGLS using 20 time steps
(Fig. 13.13a), the other is a fully implicit PGLS realiza-
tion (Fig. 13.13b) and the third is the use of the adap-
tive AB/TR predictor-corrector PGLS (Fig. 13.13c)
with 25 varying time steps.  Since there is no analytical
solution for the present problem we run the standard
Galerkin-FEM with the AB/TR scheme on a dense
mesh (25,921 nodes) as depicted in Fig. 13.13d. The
agreement of the present PGLS results is quite well and
provides better solutions as such found by Wendland18

(cf. Fig. 13.12 and Fig. 13.13a-c with Fig. 13.13d).

K 102=

Figure 13.11 The 2D advection-dispersion problem with
oblique flow (from18).

Table 13.2 Simulation parameter used 2D advection-
dispersion problem at oblique flow

Case [s]
 

[m] [m] [m] [m]
Pg Co

4 2.0 2.0 0.2 2.0 2.0 1.0 1.5

5 1.0 0.02 0.002 2.0 2.0 100.0 0.75

∆t βL βT ∆x ∆y
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Figure 13.12 Distribution of concentration at 40 s com-
puted by Wendland18  for the case 4.

Figure 13.13 Distribution of concentration at 40 s com-
puted by a) the Crank-Nicolson PGLS, b) fully implicit
PGLS, c) AB/TR PGLS (25 adaptive predictor-corrector
steps, RMS error = ) and d) the standard Galerkin-
FEM with AB/TR predictor-corrector scheme applied to a
dense mesh consisting of 25,921 nodes for the case 4.
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The case 5 possesses very strong advection at a
large grid Peclet number of Pg = 100. According to the
formulation of the boundary-value problem the intrud-
ing amount of mass at the boundary is a function of the
transverse dispersivity . If holding small a very
sharp boundary layer will be formed. It is to be
expected, at coarse meshes false numerical dispersion

Figure 13.14 Distribution of concentration at 40 s com-
puted by Wendland18  for the case 5.

Figure 13.15 Distribution of concentration at 40 s com-
puted by a) the Crank-Nicolson PGLS, b) fully implicit
PGLS, c) Crank-Nicolson SUPG and d) the standard Galer-
kin-FEM with FE/BE predictor-corrector scheme applied to
a dense mesh consisting of 25,921 nodes for the case 5.
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increases artificially the boundary layer which leads to
an unphysically increase of intruding mass. This can be
clearly seen in the results shown in Figs. 13.14 and
13.15 for case 5. Most important, we recognize that the
PGLS can stabilize the solution (Fig. 13.14 (S3) and
Fig. 13.15a,b). However, the solutions are not wiggle-
free. Even in combination with the fully implicit time
marching scheme the oscillations cannot be completely
damped out. The PGLS results are comparable to the
SUPG scheme (Fig. 13.15c). But, if comparing to a
solution obtained on a dense mesh, we see the signifi-
cant difference between results computed by the
upwinding techniques (PGLS, SUPG) and the more
accurate solution for a very fine mesh (Fig. 13.15d).

The test case 5 gives some insight into the charac-
teristics of the PGLS scheme. Inspecting the matrix G
of eqn (13-63) we see a dependence of the stabilization
term on the time step size . We can expect if using
smaller time steps the influence of the stabilization
term G reduces (or vanishes). We check this interde-
pendence for the case 5 if reducing the constant time
step size  at the given grid Peclet number Pg = 100.
The obtained results are shown in Fig. 13.16 for four
Co numbers. We note the following behavior. If reduc-
ing  somewhat the solution even improves in form of
smaller oscillations in the concentration pattern (cf.
Fig. 13.16a and 13.16b). But, if reducing further the
step size  the PGLS produces wiggles again. The
smaller the time step the more oscillations are gener-
ated as shown in Figs. 13.16c and 13.16d. We found at
a sufficiently small  the solution becomes com-
pletely instable (Fig. 13.16d).

∆t

∆t

∆t

∆t

∆t

Figure 13.16 Distribution of concentration at 40 s com-
puted by the fully implicit PGLS at different Courant num-
bers Co and given grid Peclet number of Pg = 100 (case 5):
a) Co = 0.75 (  = 1s), b) Co = 0.375 (  = 0.5s), c) Co =
0.12 (  = 0.16s) and d) Co = 0.075 (  = 0.1s).
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The patch source problem refers to the transport of a
solute from a boundary source of finite extent into a
rectangular domain subjected to a uniform, unidirec-
tional velocity field. It has been studied by Leismann
and Frind14 for 2D and Burnett and Frind1,2 in 3D. The
description of the benchmarks can be found in Segol’s
book17. The definition of the 3D problem is given in
Fig. 13.17. The corresponding 2D problem refers to the
cross-section in the x-z-plane. The parameters used for
the 2D and 3D model are summarized in Table 13.3
and Table 13.4, respectively.

Figure 13.17 Definition of the patch-source problem in 3D
(from2,17).

Table 13.3 Patch-source parameters used in 2D

Domain Rectangle with dimension 200 x 40 in 
arbitrary units [L]

Source location

Pore velocity 0.1 [L/T] in the x-direction, 0.0 in the 
z-direction

Boundary condi-
tions

 at the source, C = 0 outside 
the source at x = 0

Initial conditions C = 0

Longitudinal dis-
persivity, 

1.0 [L]

Transverse dis-
persivity, 

1.0 [L]

Grid characteris-
tics

Uniform grid with 2000 quadrilateral 
elements

Longitudinal 
spacing, 

2.0 [L]

Transverse spac-
ing, 

2.0 [L]

Time increment, 10 [T]

Grid Peclet num-
ber, Pg

2

Courant number, 
Co

0.5

x 0 0 z 8≤ ≤,=

Co 1=

βL

βT

∆x

∆z

∆t
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The analytical solution for the 2D patch-source
problem together with Leismann and Frind’s symmet-
ric matrix solution14 are shown in Fig. 13.18. The
present results obtained by the Crank-Nicolson PGLS

scheme are plotted in Fig. 13.19. It becomes evident
the agreement is quite perfect and a high accuracy
could be achieved with the PGLS technique.

The results computed by Burnett and Frind1,2 for the
3D patch-source problem are depicted in Figs. 13.21

Table 13.4 Patch-source parameters used in 3D

Domain Parallelepiped of dimensions 60 x 20 
x 20 in arbitrary units [L]

Source location on the plane  in the region 
, 

Pore velocity 0.1 [L/T] in the x-direction, 0.0 in the 
y- and z-directions

Boundary condi-
tions

 at the source, C = 0 outside 
the source at x = 0 plane

Initial conditions C = 0

Longitudinal dis-
persivity, 

1.0 [L]

Transverse dis-
persivity, 

0.25 [L]

Grid characteris-
tics

Uniform grid with 30 x 20 x 20 hexa-
hedral elements

Nodal spacing in 
x-direction, 

2.0 [L]

Nodal spacing in 
y-direction, 

1.0 [L]

Nodal spacing in 
z-direction, 

1.0 [L]

Time increment, 20 [T]

x 0=
0 y 3≤ ≤ 0 z 3≤ ≤

Co 1=

βL

βT

∆x

∆y

∆z

∆t

Figure 13.18 Concentration profiles along the center of the
plume for the 2D patch-source problem - Analytical and
Leismann and Frind’s results14.

Figure 13.19 Concentration profiles along the center of the
plume for the 2D patch-source problem - Crank-Nicolson
PGLS results.
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and 13.23 for selected concentration profiles. The
shown diagrams also involve analytical solutions
which exist for the 3D patch-source problem. Burnett
and Frind could achieve good agreements with the ana-
lytical results and our results obtained for both the
Crank-Nicolson PGLS and the Crank-Nicolson stan-
dard Galerkin-FEM also lead to a satisfactory agree-
ment as exhibited in Figs. 13.22 and 13.24 for

representative concentration profiles. However, we
note there are slight differences between the standard
GFEM and the PGLS scheme, where the GFEM gives
a better agreement with the analytical solution. The 3D
view of the obtained PGLS results and the used finite
element mesh are presented in Fig. 13.20.

a) b)

Figure 13.20 a) 3D view (from bottom to top) of the plume distribution obtained by the PGLS scheme and b) used finite
element mesh.
cbcilt=ö=OQV
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Figure 13.21 Longitudinal concentration profiles at y = 0 and z = 0 for the 3D patch-source
problem - Analytical and Burnett and Frind’s results 1,2,17.

Figure 13.22 Longitudinal concentration profiles at y = 0 and z = 0 for the 3D patch-source
problem - Crank-Nicolson PGLS and standard GFEM results.
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Figure 13.23 Transverse concentration profiles at y = 0 and z = 0 and at the time stage of 320
for the 3D patch-source problem - Analytical and Burnett and Frind’s results1,2,17.

Figure 13.24 Transverse concentration profiles at y = 0 and z = 0 and at the time stage of 320
for the 3D patch-source problem - Crank-Nicolson PGLS and standard GFEM results.
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Hoopes and Harlemann8 performed a lab-scale
experiment in a semi-cylinder filled with sand (Fig.
13.25). They measured the distribution of a solute
between a recharge and a pumping well. For an analyti-
cal solution they set up a conceptual model of a two-
dimensional horizontal confined aquifer which is
homogeneous and isotropic. The flow between the well
doublette at a distance, 2d = 0.61 m, is isothermal and
in a steady state. The solute transport is advective, dis-
persive along streamlines and has a molecular diffu-
sion. Comparisons of the analytical result with
experiments and various numerical solution schemes
have already been performed elsewhere8,11,17. For the
present benchmark calcula-tions we focus on the newly
introduced PGLS scheme and check the results against
the analytical results, the standard Galerkin (GFEM)
and the streamline upwinding (SUPG) schemes of
FEFLOW.

One obtains the analytical solution in terms of the
velocity potential  and the streamline function .
They are related to the original x,y-coordinates via the
conformal transformation

(13-68)

This transformation maps the area of the half circle
with radius  onto a strip of infinite length and
width . The transport equation transforms to

(13-69)

and is now one-dimensional with the symbols taken
from Appendix A. From our assumptions on the nature
of the transport process we obtain the dispersion coeffi-
cient .

The pore velocity  at a flux rate Q of the recharge
well is

(13-70)

with the dimensionless quantities

Φ Ψ

Φ iΨ+ Ln z d+( ) z d–( )⁄=
with z x iy+=

r d≤
π 2⁄

∂C
∂t
------- v2 ∂C

∂Φ
------- D∂2C

∂Φ2
----------+

 
 
 

+ 0=

D βLv Dd+=

Figure 13.25 Plane view of Hoopes and Harlemann’s sand-
filled semi-cylinder.
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(13-71)

The velocity potential  and the streamline func-
tion  are obtained after multiplication with

. The initial and boundary conditions are

(13-72)

The dimensionless concentration at arbitrary time is
given by

(13-73)

with the dimensionless time .
Owing to the properties of the conformal transforma-
tion (13-68) the concentration can only be calculated
for spatial points with .

The integrals

(13-74)

 
with  and 
are likewise dimensionless and have been integrated
numerically. A complete analytical solution is possible
but cumbersome.

We did the numerical FEM analysis on the mesh of
Fig. 13.26 which has been refined in the half circle
with  where high Darcy fluxes occur. This mea-
sure lowers the grid Peclet number there. For the time
step control we employed the forward Euler/backward
Euler (FE/BE) predictor-corrector method. Hoopes and
Harlemann8 assumed no dispersion across streamlines
in their formulation of Eq. (13-69). The longitudinal
dispersivity  = 0.0015 m is very small and gives rise
to a steep concentration front. Hence, the transport is
dominated by advection as shown in Fig. 13.27 for
breakthrough curves at two observation points along
the symmetry line between the wells. The analytical
curve with the steepest slope can only be approximated
by numerical schemes due to finite lattice element
sizes. Furthermore, well-known problems of oscillating
numerical solutions appear. The SUPG scheme has
been employed to dampen the oscillations but intro-
duces in turn additional non-physical dispersion. The
GFEM scheme without upwinding techniques shows
slight oscillations only for high concentrations at the
second observation point y = 0.305 m which may be
attributed to the coarser mesh in that region. The dis-
persion is reasonably low. Large wiggles occur for the
PGLS scheme for high concentrations at both points.
Even the onset of the breakthrough curves is not wig-
gle-free. For intermediate concentrations the PGLS
front matches the analytical solution quite close.
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The concentration distribution at t = 0.05 d for all

three numerical schemes is depicted in Fig. 13.28. The
analytical solution has been omitted here since it is
only available in the half circle with . The center
of the concentration front at  = 0.5 is the same in
the whole region for all schemes. The SUPG scheme
again exhibits the expected additional dispersion.
Almost wiggle-free appears the GFEM scheme with an
exception at some distance above the recharge well.
The PCG solution oscillates considerably along the
concentration fringe of  = 1. Larger oscillations
appear left of the region between the wells. But wiggles
can also be observed in the direction of the pumping
well. This asymmetry is again due to the finer mesh
between the wells.

Table 13.5 Parameter of the FEFLOW for Hoopes 
and Harlemann’s two-well problem

Name Symbol Value
Steady flow

flow boundaries
flux at recharge well 6.4327 

hydraulic head at pumping well 0 m
flow materials

aquifer transmissivity  
Transient transport

transport initials
homogeneous concentration 0 mg/l

transport boundaries
concentration at recharge well 1 mg/l

transport materials
aquifer thickness 0.089 m

porosity 0.374
adsorption 0

molecular diffusion  
longitudinal dispersivity 0.0015 m
transverse dispersivity 0 m

decay rate  
FEM

wellbore radius 0.05 m
outer boundary radius 1.45 m

mesh: 3-noded triangle elements
number of nodes 1554

number of elements 2950
time stepping regime: automatic time step control

initial time step  d
simulation time period 0.2 d

solver: direct Gauss elimination

Q m2 d⁄

h

T 1 10 4–⋅ m2 s⁄

C t 0 x y, ,=( )

C0

M

ε

χ

Dd 0 10 9–⋅ m2 s⁄

βL

βT

ϑ 0 10 4–⋅  s⁄

rB

R

np

ne

∆ t0 10 5–

T

r d≤
C C0⁄

C C0⁄

Figure 13.26 Finite element grid used.
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In this benchmark calculation the GFEM scheme is
the method of first choice with reasonable dispersion
and very few oscillations. The PGLS scheme has not
performed sufficiently well due to the appearance of
wiggles with unacceptable amplitudes both for small
and high concentrations. 

Figure 13.27 Breakthrough of the concentration at two
points y = 0.145 m (left) and 0.305 m (right) on the symme-
try line x = 0 between the wells.
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Figure 13.28 Distribution of concentration computed by
GFEM, SUPG and PGLS at t = 0.05 d.
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This benchmark is taken from Nguyen’s technical
note16. Nguyen employed a two-dimensional flow field
of the form

(13-75)

to compare his PGLS scheme with the Taylor-Galerkin
finite element splitting-up method of Donea et al.7 in
the case of advective-diffusive solute transport in a
steady state. He found the PGLS scheme superior in
situations where advection severely dominates the sol-
ute transport. 

Nguyen16 introduced the flow field (13-75) in a
square cavity of unit edge length as shown in Fig.
13.29. He performed his calculations on a mesh with
20 x 20 bilinear elements. For the transport problem he
studied the concentration distribution in the advection-
dominated regime for two different grid Peclet num-
bers . He used Pg = 1.25 and Pg = 5
which lead to diffusivities of 0.02 and 0.005, respec-
tively, in arbitrary units. The initial concentration and
the concentration flow across the horizontal boundaries
were zero. A concentration gradient of unity is given
by the right and left boundary concentrations. 

The FEFLOW calculations were done for a two-
dimensional horizontal confined aquifer of thickness 1
m. Setting up the simulation model within FEFLOW is
not straightforward since the curl of the flow field (13-
75) does not vanish, i.e. . Such fields do not
occur for groundwater flow problems. However, the

flow direction can be forced almost entirely into the x-
direction by making the aquifer very anisotropic with a
factor of . We did the calculations for steady-state
flow and transient transport with the PGLS scheme. All
FEFLOW parameters for this benchmark are listed in
Table 13.6. Their values can be derived from Nguyen's
original problem if one sets the dimensionless edge
length to 1 m and introduces a concentration unit of 1
mg/l.

The comparison of the concentration distribution at
steady-state for Pg = 1.25 (Fig. 13.30) and Pg = 5 (Fig.
13.31) between Nguyen’s16 and the present FEFLOW
calculations shows almost identical results in both
cases. However, we found it very difficult to choose
appropriate time stepping regimes. For the smaller
Peclet number we used constant time steps at  = 0.01
d which means a maximal Courant number Co = 0.2 for
a grid element. For the larger Peclet number we took a
time step of  = 0.035 (Co = 0.7). In this case of high
advection the PGLS results react sensitively to a

qx
1
2
--- 3z 1–( )= and qz 0=

Pg qx
max ∆z 2D⁄=

∇ q 0≠×

10 5–

Figure 13.29 Square cavity with flow field and concentra-
tion boundary conditions.
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change of the Courant number. Lower Courant num-
bers produce wiggles in the critical regions next to the
horizontal boundaries. Higher Courant numbers (or
time steps) render concentration distributions with too
much dispersion.

Obviously there exists only an interval of time step
lengths where the PGLS scheme remains stable. We
have already observed a similar behavior in the test
case 5 of benchmark 3.2. With this test case we found
that the main reason lies in the time step dependence of
the stabilization matrix G in Eq. (13-63).

To complete our analysis of this benchmark we
show the FEFLOW concentration distribution of a
steady-state flow and transport calculation with a dense
mesh of 6561 nodes and 12800 3-noded-triangle ele-
ments for the dimensionless diffusivity  in
Fig. 13.32. The grid Peclet number is now reduced
from  to . Here the dispersion at the
upper right and the lower left boundaries both of
Nguyen's and the FEFLOW results has been removed
by a high lattice resolution.

D 0.005=

Pg 5= Pg 1≈

Table 13.6 Parameter for highly advective solute 
transport in a steady-state

Name Symbol Value
Steady flow

flow boundaries
flux at right/left boundary

flow materials
aquifer transmissivity  

aquifer anisotropy
Transient transport

transport initials
homogeneous concentration 0 mg/l

transport boundaries
concentration along right/left 

boundary
1 mg/l; 0 mg/l

transport materials
aquifer thickness 1 m

porosity 1
adsorption 0

molecular diffusion for Pg = 1.25  

molecular diffusion for Pg = 5  

longitudinal dispersivity 0 m
transverse dispersivity 0 m

decay rate 0 
FEM

edge length of square 1 m
mesh: 4-noded quadrilateral ele-

ments
number of nodes 441

number of elements 400
time stepping regime: constant time steps

= 0.01 d for Pg = 1.25; = 0.035 d for Pg = 5
simulation time period 10 d

solver: direct Gauss elimination

qx
1
2---

3z 1–( )±
m2 d⁄

T 1 10 4–⋅
m2 s⁄
10 5–

C t 0 x z, ,=( )

Cr l,

M
ε

χ

Dd 231.482 10 9–⋅
m2 s⁄

Dd 57.8704 10 9–⋅
m2 s⁄

βL

βT

ϑ  s⁄

l

np

ne

∆ t ∆t
T
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Figure 13.30 Concentration distribution at steady-state and Pg = 1.25, Nguyen16 (left) and FEFLOW (right).

Figure 13.31 Concentration distribution at steady-state and Pg = 5, Nguyen16 (left) and FEFLOW (right).
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Nguyen16 has set up a flow and transport model of
an unsaturated soil slab as shown in Fig. 13.33. He con-
sidered a vertical rectangle of 5 m width and 2 m depth.
Then he applied a small Darcy flux of  m/d
across 1 m at the top in the right edge of the slab. The
bottom of the slab is held at a small negative hydraulic
pressure  of -0.01 m which corresponds to a high
water content of a capillary fringe in the vicinity of a
water table. The initial vertical pressure head is set to -

1 m in the top half of the slab. Then it increases linearly
to -0.01 m at the bottom. Since the hydraulic head h is
related to the pressure head  by adding the elevation
z, namely , the initial flow will be completely
downward from the top half to the bottom half even if
the latter is more saturated. We expect the top half of
the column to fall dry except at the right where a top
inflow provides enough water to prevent this process.

Nguyen used a soil moisture retention curve

(13-76)

and a relative conductivity relationship 

(13-77)

with parameters which are typical for a very imperme-
able clay of the North Kent marshes in England. The

Figure 13.32 Concentration distribution at steady-state and
 for a dense mesh.D 0.005=

5.52 10 5–⋅

ψ

ψ
h ψ z+=

Figure 13.33 Problem measure, flow and transport condi-
tions for a vertical rectangular slab of Kent soil .

s a
a b ψ c+
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symbols are explained in Appendix A and the parame-
ters are listed in Table 13.7.

The relationships (13-76) and (13-77) do not match
both together any of FEFLOW’s parametric models for
unsaturated flow. Only the soil moisture curve (13-76)
corresponds to Haverkamp’s relation

(13-78)

if we choose the parameters appropriately. The choice
is straightforward with the parameters listed in Table
13.8. For the relative conductivity we are now forced to
use

(13-79)

from the Haverkamp model. Thus, we must fit

Haverkamp’s parameters A, B to match Nguyen's rela-
tion (13-77). The fitting process is difficult because sat-
isfactory results for the whole region of  which
stretches over many orders of magnitude cannot be
obtained. This is due to the nature of the relation (13-
77) which decays algebraically with no inherent scal-
ing conductivity. We therefore choose to fit the relation
for a soil water saturation  because in the soil
slab relatively wet conditions prevail. Figure 13.34
shows the comparison of the fitted curve and Nguyen's
original curve. The fitted curve matches sufficiently
well for  but cannot be applied in dry conditions.
The resulting values for Haverkamp’s parameters A, B
are listed in Table 13.7.

Table 13.7 Parameters for unsaturated flow in Kent 
soil from Nguyen16

Name Symbol Value

saturated conductivity  m/s

porosity 0.42

residual saturation 0.02

5.30

2.10 

0.39

18.8

Ks 5 10 9–⋅

ε

sr

a

b m c–

c

d

s sr
α ss sr–( )

α ψ β+
-----------------------+=

Kr
A

A ψ B+
--------------------=

Table 13.8 Parameters for unsaturated flow in Kent 
soil in the FEFLOW model

Name Symbol Value

saturated conductivity  m/s

porosity 0.42

residual saturation 0.0

maximum saturation 1.0

2.5238

0.39

0.01744

0.6548

Kr

s 0.6≥

s 0.6≥

Ks 5 10 9–⋅

ε

sr

ss

α a b⁄=

β c=

A

B
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The numerical calculations have been carried out on
a 50x20 mesh of bilinear square elements. We
employed the forward Euler/backward Euler predictor-
corrector time stepping technique (FE/BE) for the flow
and transport calculation. Figure 13.35 compares the
results of Nguyen and the present calculation after t =
400 d for the pressure head . They agree very well
despite the slightly different relationships for the rela-
tive conductivity.

At t = 400 d the wetting front has not yet reached
the bottom of the slab. This is the case in Fig. 13.36
after 10,000 days but the steady state is not yet reached.
In this state the whole region is (almost) saturated since
water is continuously infiltrated at the top but cannot
leave the slab via the bottom boundary.

For the transport problem one can do a rough esti-

mation of the propagation of the solute front by multi-
plying the top boundary flux which determines the
velocity in the system by the simulation time. One can
divide this number by the pore velocity and obtains a
displacement of ca. 1 m after 10,000 days. Around this
time a concentration front should be well visible in the
slab.

For the FEFLOW computation we used the trans-
port parameter of Table 13.9. A boundary concentra-
tion of 1 mg/l has been imposed along the boundary
flux line at the top as shown in Fig. 13.33. The parame-
ters correspond to those of Nguyen except that we did
not allow for decay and adsorption. Therefore our con-
centration contours should have a larger extent than
those of Nguyen at a given time step. Unfortunately,
we were unable to reproduce this behavior for the
transport calculation. According to our estimation from
above a sizeable concentration distribution should
appear at some thousand days. This in contrast to
Nguyen's findings whose results suggest that the front
reaches the half depth after some hundred days. We do
not show his results here but this discrepancy of an
order of magnitude in the time of equal solute displace-
ment still needs to be clarified.

We now proceed to the comparison of the GFEM,
SUPG and PGLS schemes of FEFLOW for the concen-
tration distributions at 5000 days (Fig. 13.37) and
10,000 days (Fig. 13.38). First we state that our estima-
tion made a reasonable prediction for the extent of the
concentration front. Before 5000 days all three
schemes render wiggle-free solutions. From then on
wiggles appear with the GFEM scheme but the PGLS
scheme remains stable.

Figure 13.34 Relative conductivity relation for Kent soil as
used in Nguyen16 and in the present FEFLOW model.
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At 10,000 days the PGLS scheme creates smaller oscil-
lations as well but for the GFEM scheme they extend
over the whole concentration front. The SUPG scheme
remains wiggle-free as expected but smoothens the

concentration front in an unphysical way. The wiggles
are not caused by the mesh which is homogeneous in
the whole region. They emanate from the boundary
point with the coordinates (4 m, 2 m) where the bound-

Figure 13.35 Pressure head  distribution after 400 days from Nguyen16 (top) and the present FEFLOW computa-
tion (bottom), contour line units are [kPa].
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ary flux jumps from a finite value to zero. High flux
gradients occur in the vicinity of this point and are
most difficult to reproduce by the GFEM scheme
whereas the PGLS scheme is more successful.

We therefore prefer the PGLS scheme in this bench-

mark calculation. It is noteworthy, though, that even for
the moderate conditions of a slow flow in a relatively
wet soil wiggles still cannot be suppressed by this
scheme.

Figure 13.36 Pressure head  distribution after 10,000 days for the present FEFLOW computation, contour line
units are [kPa].
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Table 13.9 Transport parameters for Kent soil in the FEFLOW model

Name Symbol Value

longitudinal dispersivity  m

transverse dispersivity 0 m

molecular diffusion  

porosity 0.42

decay rate 0.0

adsorption 0.0

boundary condition 1 mg/l

βL 10 2–

βT

Dd 1.1574 10 11–⋅ m2 d⁄

ε

ϑ

χ

C0
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Figure 13.37 Concentration distribution after 5000 days for
the GFEM, SUPG and PGLS schemes of FEFLOW.
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Figure 13.38 Concentration distribution after 10,000 days
for the GFEM, SUPG and PGLS schemes of FEFLOW.
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We benchmarked the PGLS technique which has
been implemented into the FEFLOW package for tran-
sient 2D and 3D problems. The features and results we
found give rise to the following conclusions:

(1) The PGLS represents an alternative numerical
scheme to solve transient advection-dispersion trans-
port problems. In contrast to standard techniques PGLS
leads to symmetric matrix systems and possesses a
built-in streamline-like upwind characteristics without
any free parameter.

(2)  The PGLS produces results which are comparable
to the standard techniques if the processes are charac-
terized by low to moderate advection.

(3) For advection-dominant problems (high Pg num-
bers) the PGLS cannot become wiggle-free.

(4) At high Pg numbers (coarse mesh) and small Co
numbers (small time steps) the PGLS can run into diffi-
culties. This seems to be a ’natural’ property of the
PGLS, because the damping matrix G in (13-63) is
weighted by the time step size. If decreasing  the
damping matrix G reduces with a quadratic descending
rate, while the other matrix terms in (13-60) or (13-61)
possesses only a linear or an independent descends of

. As the result, the PGLS scheme must become
instable for sufficiently small .

(5) The PGLS damping matrix G in (13-63) is strongly
related to the pore velocity . For dry unsatur-

ated problems with  the matrix G becomes
singular (cf. remark 2).

(6) The PGLS is not applicable to the divergence form
of the governing transport equation. On the other hand,
the maintenance of PGLS’s symmetric matrix property
forces to drop any other techniques than simple Picard-
iteration-based procedures for nonlinear problems.
Here, Newton iteration would not be applicable for the
PGLS (unless the symmetry is given up in favor of a
better convergence of the Newton scheme).

From the practical point of view, the PGLS provides
an additional alternative in modeling advection-disper-
sion equations. The advantage coming with the PGLS
is in form of a symmetric matrix system.
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Latin symbols

 concentration and reference
concentration of a miscible chemical
species, respectively;
specific heat capacity of fluid and
solid, respectively;
tensor of mechanical dispersion;
molecular diffusion in the porous
medium;

1 gravitational unit vector;
gravitational acceleration;
hydraulic (piezometric) head;

1 unit tensor;
tensor of hydraulic conductivity for
the saturated medium (anisotropy);
tensor of permeability for the
saturated medium (anisotropy);

1 relative hydraulic conductivity
( ,  if saturated at

);
finite element shape function at node
i;
fluid pressure;
fluid flow sink/source;
bulk mass sink/source;

C Co, ML 3–

cf cs, L2T 2– Θ 1–

D L2T 1–

Dd L2T 1–

e
g LT 2–

h L
I
K LT 1–

k L2

Kr
0 Kr 1≤< Kr 1=

s 1=
Ni

p ML 1– T 2–

Qh T 1–

QC ML 3– T 1–
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bulk thermal sink/source;
fluid and solid thermal sink/source,
respectively;
Darcy flux vector;
normal flux on a boundary (positive
outward);

1 retardation and derivative
retardation, respectively;
storage coefficient;

1 saturation of the fluid phase
( ,  if medium is
saturated);

1 residual saturation;
1 maximum saturation;

temperature and reference
temperature, respectively;

 pore velocity;
 pore velocity vector;

elevation above a reference datum;

Greek symbols

solutal expansion coefficient;
thermal expansion coefficient;
longitudinal and transverse
dispersivity, respectively;
boundary;
fluid compressibility;
characteristic element length;
time increment at level n;

1 porosity ( );
chemical decay rate;
tensor of thermal hydrodynamic
dispersion of fluid phase;
thermal conductivity for fluid and

solid, respectively;
 dynamic viscosity and reference

dynamic viscosity of fluid,
respectively;
fluid density and reference fluid
density, respectively;
solid density;
skeleton compressibility;
adsorption function to describe
Henry, Freundlich and Langmuir
isotherms;
pressure head (  saturated
medium,  unsaturated
medium);
domain;

Subscripts

nodal indices;
reference value;

Superscripts

element;
fluid (water) phase;
time level;
solid phase;

Abbreviations

AB/TR Adams-Bashforth/trapezoid rule
predictor-corrector technique;

Co Courant number;
FE/BE forward Euler/backward Euler

predictor-corrector technique;

QT ML 1– T 3–

QT
f QT

s, ML 1– T 3–

q LT 1–

qn

R Rd,

So L 1–

s
0 s< 1≤ s 1=

sr
ss
T To, Θ

v LT 1– q εs( )⁄
v LT 1– q εs( )⁄
z L

α L3M 1–

β Θ 1–

βL βT, L

Γ
γ L 1–

∆l L
∆tn T
ε 0 ε< 1≤
ϑ T 1–

Λ MLT 3– Θ 1–

λf λs, MLT 3– Θ 1–

µ µo, ML 1– T 2–

ρ ρo, ML 3–

ρs ML 3–

φ L 1–

χ

ψ L ψ 0>
ψ 0≤

Ω

i j k, ,
o

e
f
n
s
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GFEM Galerkin-based finite element
method;

Pg grid Peclet number;
PGLS Petrov-Galerkin least-square;
SUPG streamline-upwind Petrov-Galerkin
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FEFLOW provides alternative formulations of con-
straints for Cauchy-type (3rd kind) flow boundary con-
ditions (BC’s). Cauchy-type BC’s are commonly used
to describe river and other surface water boundaries in
groundwater modeling. Their mathematical formula-
tion is given by the following expression1 written for
groundwater flow (cf. Fig. 14.1)

(14-1a)

with

(14-1b)

where the parameters and variables can be temporarily
and spatially dependent:

qn x t,( ) Φ hR h–( )–=

Φ
Φin      for    hR h>

Φout     for    hR h≤



=

Figure 14.1 Transfer through a clogged river bed for a) infiltrating and b) exfiltrating conditions.
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(14-1c)

in which

= thickness of the clogged river bed
(’colmation’ zone), ;

= hydraulic head, ;
= reference hydraulic head (e.g., water

level of the river), ;
= normal Darcy flux going through the

boundary (positive outward),
;

= time, ;
= space coordinates, ;
= boundary of groundwater domain

;
= transfer coefficient (colmation,

leakage), ;
= directional in-transfer coefficient,

;
= directional out-transfer coefficient,

;
= groundwater modeling domain;

NQKO léíáçå~ä= `çåëíê~áåíë= Ñçê
PêÇ=háåÇ=_çìåÇ~êó=`çåÇáJ
íáçåë
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The formulation of constraints is based on the for-
malism of complementary conditions for a type of BC1.
Cauchy BC’s are related to a potential condition which
has to be prescribed on the boundary  in form of the
reference hydraulic head . Naturally, such type of
BC is to be constrained by maximum and minimum
fluxes, . The following standard form of
constraints for 3rd kind BC’s is used:

(14-2)

where  represents the summed-
up, called lumped balance fluxes at nodal points to
which the Cauchy-type boundary values are related. A
typical example of a flux-limiting infiltration from a
river bed is shown in the sketch of Fig. 14.2. If the
groundwater table decreases below the location of the
river bed a specific situation in form of a ’flow separa-
tion’ occurs. Physically, the zone between the river bed
and the water table becomes unsaturated and the linear
relationship (14-1a) for the infiltrating water as a func-
tion of the difference  between the reference (river)
water head  and the groundwater head  cannot be
maintained anymore. It requires the prescription of the
maximum bound .

Φin Φin x t,( )=

Φout Φout x t,( )=
h h x t,( )=

hR hR x t,( )= 
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FEFLOW provides the standard form of constraints
for Cauchy-type BC’s, where the bounds  and/or

 are directly input as shown in Fig. 14.3a. This
formulation is termed as flux-constrained transfer BC.

Such a limitation by fluxes represents a quite gen-
eral formulation. The min-max fluxes are user-speci-
fied input parameters, which can be quantified by user-
own rules and data. However, the disadvantage is here
that the determination of the constraint fluxes requires
geometric information of the boundaries (e.g., transfer
areas) at a given mesh. The new formulation of con-
straints to be described next overcomes this drawback
and is more useful in practice.

NQKOKO qÜÉ=åÉï=Ñçêã

Instead of prescribing the constraint fluxes directly
the new form allows the input of maximum and mini-
mum head values, , which are used to derive
the constrained min-max fluxes for Cauchy-type BC’s.
This form is termed head-constrained transfer BC and
can be optionally selected in the input menu for trans-
fer constraint conditions of flow boundaries (Fig.
14.3b). In contrast to Eq. (14-2) the mathematical for-
mulation of the new head-constrained transfer BC is as
follows:

 (14-3)

Figure 14.2 Flux-limiting infiltration from a river bed for-
mulated by a maximum flux constraint .Qmax t( )

Qmax(t)

hR h

∆h(t) = hR- h

Q(t)
Qmax

exfiltratinginfiltrating

surface

water table

Figure 14.3Input menu for prescribing a) flux-constrained
and b) head-constrained transfer conditions for Cauchy-type
BC’s.
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The advantage of this constraint formulation is that the
limiting (constraint) fluxes  are rates (no
more discharges!), which are computed from the input
head constraints . The physical meaning of
the head constraints is explained for the minimum head

 limit as illustrated in Fig. 14.4.

The river bed is clogged by a colmation zone with a
thickness . A perched water situation occurs, where
the groundwater table has no more a direct hydraulic
contact with the surface water. An unsaturated zone
forms below the river bed. Typically, in the colmation
zone the subsurface water remains saturated (Fig.
14.4). Assuming the validity of Darcy’s law for the col-
mation zone, the normal flux from the river entering
the unsaturated zone can be assessed as

(14-4)

where  is the saturated hydraulic conductivity of
the colmation zone. It can be easily seen that Eq. (14-4)
is equivalent to the constraint flux  in Eq. (14-3)
derived from the minimum head limit , where the
transfer coefficient is simply given by

(14-5)

REMARK 1: The directional in-transfer and out-trans-
fer coefficients  are assigned according to the
minimum and maximum head constraints, viz.,

(14-6)

REMARK 2: The new head-constrained transfer BC is
very efficient. It need not a switching of BC’s if con-
straints are set and reset during a simulation run.

REMARK 3: Time-dependent head-constraints are
appropriate to prescribe intermediate flux conditions
along a boundary (e.g., at certain times no flux condi-
tions should occur as applied to temporarily moving
BC’s). Since  a temporal no flux condition
is automatically satisfied if the reference head 
becomes identical to the constrained head  (or

) in time, that means written for the minimum con-
straint

qn
max qn

min,

hmax hmin,

hmin

Figure 14.4 New head-constrained transfer BC for a flux-
limiting infiltration from a river bed.
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(14-7)

To force a temporal no flux conditions independent of
the groundwater head , the maximum head constraint
has to be set additionally to the reference head. It
requires

(14-8)
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1. Diersch, H.-J.G. Interactive, graphics-based finite-element simu-
lation system FEFLOW for modeling groundwater flow, contam-
inant mass and heat transport processes. WASY, Berlin, 2002.
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In modeling density-dependent flow and mass
transport problems an increasing interest has been
cases where high-concentration differences in the sys-
tem occur, e.g., applications to hazardous waste dis-
posal in salt formations or brine transport in deep
aquifers. Traditionally, density-dependent mass trans-
port is modeled on the basis of the classic Darcy law
and the linear Fickian dispersion equation. But, in one-
dimensional laboratory experiments 2,4 with high-con-
centration gradients it was found that the dispersivity
does not seem to be a property of the porous medium
alone. It was observed that the mixing process of salt-
water is dependent on the concentration gradient and
the dispersivity had to be changed from case to case to
get a sufficient fit to the measurements. Using same
porous media the dispersivity had to be decreased as
the difference in concentration of the resident and dis-
placing fluids increased. In past, various attempts were
made to explain this phenomenon. A formal depen-
dence of dispersivities on the salt concentration has
shown an inappropriate and a theoretically contrary
approach because the dispersivities are a geometric

property of the porous medium and should not be
dependent on the physicochemical property of the fluid
flowing through the voids.

Hassanizadeh & Leijnse2 and Hassanizadeh3 have
proposed extensions of the dispersion theory in form of
a non-Fickian law. In using such a nonlinear dispersion
theory the laboratory experiments could be explained
and fit reasonably. New experiments have confirmed
these theoretical findings4. Furthermore, from the theo-
retical point of view the non-Fickian dispersion is con-
sistent with the classic approach and theoretically well
founded.

The nonlinear (non-Fickian) dispersion law has
been implemented in FEFLOW1 both for 2D and 3D
mass transport processes. It represents an extension to
the classic linear Bear-Scheidegger dispersion law and
can be optionally selected. In the following the theoret-
ical basis of the nonlinear dispersion theory will be
described in some detail. Then the implementation in
FEFLOW and the numerical solution of the nonlinear
mass fluxes will be discussed. Finally, an example is
presented which benchmarks the implemented rules.
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The starting point forms the mass conservation
equation written as

(15-1)

where the symbols are summarized below in the sec-
tion ’Notation’. The dispersive mass flux vector  is
commonly expressed by the linear Fickian type equa-
tion, viz.,

(15-2)

The hydrodynamic dispersion tensor  is assumed to
be independent of the concentration  and its gradient.
It is, however, considered to be a function of the flow
velocity  and is commonly described by the Bear-
Scheidegger dispersion relationship for a porous
medium according to

 (15-3)

For the linear Fickian law (15-2) the dispersive mass
flux of a solute is proportional to the solute concentra-
tion gradient. But, if large concentration gradients
exist, nonlinear effects become important and  has to
be replaced by an extended nonlinear (non-Fickian)
dispersion law2

(15-4)

where  is a new high-concentration (HC) dispersion
coefficient and  is still the known Bear-Scheidegger
dispersion tensor given by Eq. (15-3) with longitudinal
and transverse dispersivities considered to be (con-
stant) properties of the porous medium and indepen-
dent of the fluid properties and transport processes.

High concentration-gradient experiments2,4 have
shown that the nonlinear dispersion law (15-4) gives
very good fits to measured breakthrough curves. It is
found that the HC dispersion coefficient  varies
inversely with the flow velocity . Schotting et al.4
have summarized their fitted experiments in the fol-
lowing approximate expression for  as

(15-5)

NRKP fãéäÉãÉåí~íáçå= áå
cbcilt

NRKPKN pÉäÉÅíáçå=çÑ=ÇáëéÉêëáçå=ä~ïë

In FEFLOW the modeler can use either the standard
linear Fickian dispersion law (15-2) or the nonlinear
non-Fickian dispersion law (15-4). Both options can be
set in the Problem Editor for the mass material data.
Figure 15.1 exhibits this part of the editor, where the
both dispersion laws can be chosen and the additional
HC- -parameter is input in the case of the nonlinear
dispersion.
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The numerical solution of the governing balance
equation (15-1) with the nonlinear dispersion law (15-
4) requires a specific iterative strategy. A recursive
scheme is preferred which is performed by the follow-
ing iteration procedure:

(15-6)

where  represents an iteration counter. The iteration
(15-6) is performed at each time step in dependence on
the selected time stepping strategy: (1) For fixed (pre-
defined) time steps it is iterated at each time level. The
procedure is terminated if the convergence criterion is
satisfied. (2) For the adaptive predictor-corrector time
marching the nonlinear solution is fully controlled by
the time step itself, where the nonlinear dispersion is
linearized in time according to

(15-7)

where  corresponds to the time level.

NRKQ bñ~ãéäÉ

Schotting et al.4 have derived analytical solutions in
1D, which will be used to benchmark FEFLOW with
the nonlinear dispersion law. We consider the displace-
ment of a high concentration through a column with
constant properties. The data are summarized in Tab.
15.1.

Figure 15.1 FEFLOW’s mass material data editor menu to
choose the mass dispersion law option and to input the HC
dispersion coefficient in the case of nonlinear dispersion.
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The column is initially filled with freshwater ,
. At  brine  starts entering the

column with uniform specific discharge . This
implies the following initial condition

(15-8)

In FEFLOW’s numerical simulation the outflowing
boundary is imposed with a natural gradient boundary
condition . The column is discretized by
900 linear quadrilateral elements resulting an spatial
increment of . For the temporal approxi-
mation the default forward Adams-Bashforth/back-
ward-trapezoid rule predictor-corrector scheme with

adaptive time stepping (error tolerance ) is used. It
requires 144 time steps to simulate the displacement
process for a dimensionless time  defined as

(15-9)

up to . The numerical results are in a very good
agreement with the analytical results obtained by
Schotting et al.4 in form of a semi-explicit solution as
shown in Fig. 15.2.

Table 15.1 Data of the displacement experiment

Quantity Symbol Magnitude Unit

Length of column 4.5 m

Flow rate

Porosity 0.2 1

Boundary concentration
(brine input)

Molecular diffusion 0.0

Longitudinal dispersiv-
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1.0 m

HC-dispersion coeffi-
cient
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= salinity, saltwater concentration,
;

= brine input concentration, ;
= tensor of hydrodynamic dispersion,

;
= effective molecular diffusion,

;
= unit (identity) tensor, ;
= dispersive mass flux vector,

;
= time level;
= Darcy velocity vector, ;

= uniform specific discharge, ;
= chemical reaction rate, ;
= time, ;
= high-concentration (HC) dispersion

coefficient, ;
= longitudinal and transverse

dispersivity, respectively, ;
= porosity, ;
= density of freshwater, ;
= brine density, ;
= iteration counter;
= dimensionless time, ;
= Nabla (vector) operator, ;

Figure 15.2 Numerical density profiles simulated by FEFLOW at selected dimen-
sionless times  in comparison with the semi-explicit analytical solutions given by
Schotting et al.4 for a brine displacement in a column at nonlinear dispersion.
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To compute the derivatives (velocities) from a finite
element approximation, the obvious and self-consistent
approach is that of directly differentiating the finite ele-
ment solution at points of interests. In groundwater
flow simulation local Darcy velocities are calculated
by differentiating the hydraulic head  (or pressure )
solution and using the appropriate constitutive rela-
tions. This direct computation results in lower order,
discontinues derivatives with inferior accuracy at the
boundary of the elements and at the interelement nodes
where accurate values of fluxes are usually desired. To
achieve accurate derivatives different techniques are
practiced.

In the finite element method local and global
smoothing (projection) techniques are commonly
applied where the derivatives are computed at optimal
sampling (Gauss) points. The local projection proce-
dure consists of an extrapolation from the superconver-
gent points and a subsequent averaging at nodes to
obtain accurate nodal velocity values. Global smooth-
ing assume a continues interpolation of the derivatives

of the same form as that used for the basis functions.
Such kind of projections are considered as consistent
finite element derivatives. FEFLOW uses these tech-
niques which are described in Diersch and Kolditz6 in
the context of coupled flow and transport simulation,
which are summarized in the Appendix B. In practical
finite element computations and numerous benchmark
tests3,4,6,14 it has been shown that continuous deriva-
tives by using the velocity smoothing techniques give
accurate solutions.

In density-dependent flow and transport processes a
proper care should be taken in the derivation of the
velocities. This has to do with the lower-order approxi-
mation attainable for the pressure (or head) gradients

 which can conflict the high-order spatial variability
in the gravity (buoyancy) term . The problem has
been addressed by Voss20, Voss and Souza21, Herbert et
al.11 and Leijnse17, who proposed modified schemes in
evaluation the discontinuous derivatives termed as con-
sistent velocity approximation. In Voss and Souza’s
approach the spatial variation in the gravity term is
reduced to the same spatial functionality occurred for
the pressure gradient, i.e., for linear finite elements the
pressure gradient is constant (piecewise constant per

h p

∇p
ρg
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element) and accordingly the gravity term should be
also piecewise constant. Leijnse extends this procedure
and prefers averages of the buoyancy term only in the
appropriate gravity direction. While Voss and Souza21

and Leijnse17 tried to overcome the problem of consis-
tency by precision reduction, Herbert et al.11 solved it
by introducing a second-order approximation for the
pressure (quadratic shape functions) and a linear-order
approximation for the salinity (linear shape functions).
Herbert et al.’s mixed approach is more natural in the
finite element method (weighted Galerkin statements),
but, it results in additional computational costs.

The smoothing techniques6 (local and global projec-
tions) for the velocities which are derived in the ele-
ments without modifying the spatial variability in the
gravity term (no precision reduction) are an efficient
alternative for deriving consistent velocity fields. It
results in a continuous representation of the nodal
velocities. The derivatives are used on an element
patch surrounding the nodes. In this way the technique
is consistent with an integral evaluation of the flux
terms and the patch-related nodal velocities represents
averaged quantities in the weighted sense.

The question arises now whether the projection
(smoothing) techniques for deriving patch-related
nodal velocities are sufficiently consistent for density-
dependent problems. Indeed, we can confirm it in all
previous tests and applications. The benchmark tests in
form of the Henry problem4,14, the Elder problem6,14,
salt dome problem6,14 and others5,7,13 revealed good
agreements with the other solutions available. More
recently, however, an obvious counter-example of a
high-contrast density problem gives rise to a critical
review of the used velocity derivation procedures.

Oswald18 performed a series of three-dimensional
laboratory experiments termed as the saltpool problem
which involves stable layering of saltwater below
freshwater. A discharge of water causes a transient
upconing of saltwater. In varying the density contrast in
the upconing process the measured quantities for
instance in form of the salinity breakthrough at the out-
let have shown a significant influence due to gravity
effects. Oswald et al.19 tried to recompute the saltpool
processes by using different codes (for more see18).
While at a lower salinity (1% salt mass fraction) a good
agreement was found, at high salinity (10% salt mass
fraction) the computed saltwater concentration at the
outlet became generally too large and often quite depart
from the measurements. This discrepancies gave rise to
numerous investigations and the development of
improved numerical schemes.

Ackerer et al.2 applied a new numerical code
TVDV-3D which is based on mixed and discontinuous
finite elements (for more details see Ackerer et al.1).
Their results are satisfactory, however, the simulation
overestimates the saltwater mixing concentration for
the lower density case and underestimates the saltwater
breakthrough at the outlet for the high density case.
Most recently, Johannsen et al.16 presented improved
results and achieved a good agreement with the mea-
surements for both cases of low and high densities.
Some parameters, particularly the permeability, the
porosity and the transverse dispersivity were adjusted
within accepted bounds in order to fully match the
results of the physical experiment. From numerical
point of view, their results are simulated with the new
code d3f (for more, see Frolkovic9) in which improved
techniques for computing consistent velocities under
OUO=ö=tÜáíÉ=m~éÉêë=J=sçäK=f
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strong density effects are incorporated. These tech-
niques were substantially responsible for the success of
the difficult simulations of the saltpool problem at high
salinity contrast.

As a consequence from the saltpool simulations the
techniques for approximating the consistent velocities
were also revised for the FEFLOW code. In the follow-
ing a new improved technique is described and tested
which is implemented in the FEFLOW code.

NSKO _~ëáÅ=bèì~íáçåë

For simulating density-coupled flow and transport
processes the following equations have to be solved
(symbols are listed in Appendix A):

(16-1)

where the fluid velocity (Darcy flux)  is explicitly
given by

(16-2)

introducing the relative density 

(16-3)

which is written in the two equivalent formulations in
accordance with the chosen primary variable in form of
the pressure  or the hydraulic head , where the fol-
lowing relationships hold4

(16-4)

The velocity  in (16-2) is coupled with the conserva-
tion equations (16-1) through the dependence of fluid
density  on the concentration  and tem-
perature  and, additionally, the dependence of fluid
viscosity  on the concentration  and tem-
perature .
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NSKPKN bèìáäáÄêáìã= êÉèìáêÉãÉåíW= qÜÉ
êÉèìáêÉãÉåí=çÑ=ÅçåëáëíÉåÅó

Consider the following hydrostatic situation12 for a
finite element as shown in Fig. 16.1. For simplicity, the
interval  is [0,1]. 
We assume the density  is varying linearly in the z-
direction of gravity, viz.,

(16-5)

For the simple vertical problem the Darcy velocity is

(16-6)

Under a hydrostatic equilibrium the velocity vector 
is (must be) zero everywhere. This is termed as the
requirement of consistency:

(16-7)

For the above example (Fig. 16.1) with a vertical den-
sity gradient we have to require

(16-8)

∆z
ρ

ρ ρo ρ1 ρo–( )z+= z 0 1,[ ]∈

vx
kxx
µ

-------∂xp–=

vy
kyy
µ

-------∂yp–=

vz
kzz
µ

------ ∂zp ρg+( )–= 









Figure 16.1 Hydrostatic conditions in a finite element of length ∆z = 1 under a linear density gra-
dient ; spurious vertical velocities  caused by an inexact pressure
approximation.
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and the pressure  has to satisfy the following relation-
ship

(16-9)

which yields

(16-10)

Similar expression can be derived for the hydraulic
head :

(16-11)

(16-12)

Equation (16-10) indicates that for a linear density  a
quadratic shape of the pressure  is required to main-
tain a hydrostatic equilibrium for all  in the interval.

NSKPKO qÜÉ= ~êíáÑ~ÅíW= péìêáçìë= åçåÅçåJ
ëáëíÉåí=îÉäçÅáíáÉë=~åÇ=Åçããçå=ï~óë=íç
çîÉêÅçãÉ

Typically, in a discretization algorithm the concen-
tration  and/or the temperature  is linearly approxi-
mated in a finite element. This leads to a corresponding
linear relationship for the density  as considered
above. But, the pressure  (or alternatively the head )

is also approximated by a linear function in an element.
This is (in the example of Fig. 16.1)12

 (16-13)

Inserting (16-13) in the Darcy equation (16-2) or (16-6)
and using the exact nodal values  and

 from (16-10) we get for the z-
component of the approximated velocity

(16-14)

It clearly indicates that the approximated velocity
only vanishes at the middle point (z = 1/2) while at the
other points artificial nonzero quantities occurs which
take maximum values with opposite signs at the left
and right point (cf. Fig. 16.1). Such spurious noncon-
sistent velocities can waste the computational results in
form of an overestimation of the mixing processes at
strong density coupling. In the advective terms of the
governing transport equations (16-1) it will often not
have a large effect, since the integration over elements
and the assembly of adjacent elements averages out the
nonconsistent velocities. However, if such spurious
velocities are used to evaluate the dispersion tensor at
element level an artificial increase of hydrodynamic
dispersion (mixing) can result17.

The most important way to overcome the problem is
in reducing the spatial variability in the gravity term.
Commonly, the gravity term is averaged in the appro-
priate direction so as proposed by Voss20, Voss and
Souza21 and Leijnse17. In the above example we have to
use now  and find with the exact nodal
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values  and :

(16-15)

which satisfies the equilibrium at all points.

On other possibility is in averaging the nonconsis-
tent velocities at nodal points by local or global projec-
tion (smoothing) techniques as mentioned above and
thoroughly described in Appendix B. It smooths out the
spurious velocities. Let us consider the following
examples as shown in Fig. 16.2, where a node k is con-
sidered which is shared by two elements.

The smoothing procedure for the nonconsistent veloc-
ity (16-14) leads to a velocity at the node k as

(16-16)

If we can assume that the density  at the node k is an
average of the upper and lower density values, i.e.,

, then the nodal velocity (16-16)
becomes consistent . Obviously, this is true (or
approximately true) for typical density profiles as
shown as case 1 in Fig. 16.2. However, if the density
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Figure 16.2 Continuous nodal velocity by averaging (smoothing) nonconsistent
velocities for two cases of vertical density profiles.
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profile is strongly variable over a short distance (e.g., a
saltwater-freshwater interface with a high density con-
trast) the nonconsistent velocities do not average out.
This can be seen for the case 2 in Fig. 16.2 at the node k
where an upgoing spurious velocity remains in order of

 (16-17)

and the consistency is not satisfied at the node under
such conditions.

We can summarize and conclude the following:
(1) Consistency is the requirement to a zero velocity
under hydrostatic conditions for an arbitrary stable
density gradient. A consistent velocity approximation
satisfies the relationship (16-7) at the local evaluation
points.

(2) Averaging of the gravity term for each element
yields a consistent velocity approximation, however,
the accuracy in the spatial variability is reduced.

(3) Smoothing of nonconsistent velocities derived at
the Gaussian evaluation points averages out spurious
velocities in the most cases. However, if the density
gradients become very large spurious velocities at local
points can remain. Accordingly, smoothing is a proce-
dure to derive continuous nodal velocities which are
often, but not always consistent in the sense of the
statement (16-7). 

(4) There is a desire to a more general, accurate and
robust procedure for a consistent velocity approxima-
tion applied to density-dependent mass and heat trans-
port problems.

NSKQ kÉï= cçêãìä~íáçå= çÑ= `çåJ
ëáëíÉåí=sÉäçÅáíó

NSKQKN qÜÉ= áãéêçîÉÇ= cêçäâçîáÅ= ~åÇ
hå~ÄåÉê=~äÖçêáíÜã

Frolkovic8,9 and Knabner and Frolkovic12 proposed
an new algorithm for approximating consistent veloci-
ties in two- and three-dimensional finite elements.

NSKQKNKN qê~åëÑçêã~íáçåë=áå=äçÅ~ä=ÅççêÇáJ
å~íÉë

The algorithm is described for affine and isopara-
metric families of elements, where the computations
are realized on generalized (local) coordinates

. The mapping from the local coordinates
 to the global ones  is given by

(16-18)

where ,  are the coordinates of
the vertices (nodes ) of the element and  are the
finite element shape functions. The mapping requires
that the transformation Jacobian  is nonsingular,
where  is given by
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(16-19)

Using the transformation we obtain

(16-20)

for the derivatives and

(16-21)

for the gravity vector, where  is the inverse Jaco-
bian. Using these relationships the equivalent formula-
tion of the Darcy velocity (16-2) in local coordinates is
given by

(16-22a)

or

(16-22b)

NSKQKNKO =qÜÉ=åÉï=Ñçêãìä~íáçå

Introducing the following integral functions

(16-23)

Since

(16-24)

we can write the Darcy velocity (16-22b) in an equiva-
lent form

(16-25)

These new integral functions  allows us to
obtain the same spatial variability for both the head (h)-
term and the gravity term.

J

∂ξ

∂η

∂ζ 
 
 
 
 

x y z, ,{ }
∂ξx ∂ξy ∂ξz

∂ηx ∂ηy ∂ηz

∂ζx ∂ζy ∂ζz

xm∂ξNm( ) ym∂ξNm( ) zm∂ξNm( )

xm∂ηNm( ) ym∂ηNm( ) zm∂ηNm( )

xm∂ζNm( ) ym∂ζNm( ) zm∂ζNm( )
m
∑

= =

=

∇ ξ η ζ, ,( )N

∂ξN

∂ηN

∂ζN 
 
 
 
 

J ∇N⋅= =

∇N J 1– ∇ ξ η ζ, ,( )N⋅=

e ξ η ζ, ,( )

eξ

eη

eζ 
 
 
 
 

J e⋅= = e J 1– e ξ η ζ, ,( )⋅=

J 1–

v Kfµ J 1– ∇ ξ η ζ, ,( )h ρ̃J e⋅+( )⋅ ⋅–=

v Kfµ J 1– ∇ ξ η ζ, ,( )h ρ̃e ξ η ζ, ,( )+( )⋅ ⋅–=

Hξ Hξ ξ η ζ, ,( ) ρ̃ θ η ζ, ,( )eξ θ η ζ, ,( ) θd
0

ξ

∫= =

Hη Hη ξ η ζ, ,( ) ρ̃ ξ θ ζ, ,( )eη ξ θ ζ, ,( ) θd
0

η

∫= =

Hζ Hζ ξ η ζ, ,( ) ρ̃ ξ η θ, ,( )eζ ξ η θ, ,( ) θd
0

ζ

∫= =














∂ξHξ

∂ηHη

∂ζHζ 
 
 
 
 

ρ̃e ξ η ζ, ,( )=

v Kfµ J 1–
∂ξ h Hξ+( )

∂η h Hη+( )

∂ζ h Hζ+( ) 
 
 
 
 

⋅ ⋅–=

Hξ Hη Hζ, ,
OUU=ö=tÜáíÉ=m~éÉêë=J=sçäK=f



NSKQ=kÉï=cçêãìä~íáçå=çÑ=`çåëáëíÉåí=sÉäçÅáíó
The consistency of (16-25) in the definition of (16-
7) can be proved. Assuming the gravity acts in the -
direction, i.e.,  we can write

(16-26)

where  and
similarly for  and .

In the finite element method the functions
 are interpolated by their nodal basis func-

tions:

(16-27)

and we obtain the velocity (16-25) in the discretized
formulation

(16-28)

which represents a fully consistent approximation of
the Darcy velocities. We solve (16-28) for given heads

 and the values of the -functions at the
nodes . The nodal quantities  are
dependent on the finite element types and will be eval-
uated next for linear elements in two and three dimen-
sions. In doing this, the relative density  in the gravity
term is interpolated according to

(16-29)

where  are the density values at the node . In
FEFLOW the following constitutive relationship is
used for the density 

(16-30)

as a function of the concentration  and the tempera-
ture . Accordingly, the relative density  (16-3) is
given by

(16-31)

and the finite element expansion (16-29) can alterna-
tively be written as

(16-32)

or

z
ρ̃ x y z, ,( ) ρ̃ xo yo z, ,( )=

Hξ ρ̃ xo yo z θ η ζ, ,( ), ,( )eξ θd
0

ξ

∫

ez ρ̃ xo yo θ, ,( ) θd
z0

z ξ η ζ, ,( )

∫

=

=

x0 y0 z0, ,( ) x 0 0 0, ,( ) y 0 0 0, ,( ) z 0 0 0, ,( ),,( )=
Hη Hζ

h Hξ Hη Hζ, , ,

h hmNm ξ η ζ, ,( )
m
∑=

Hξ HξmNm ξ η ζ, ,( )
m
∑=

Hη HηmNm ξ η ζ, ,( )
m
∑=

Hζ HζmNm ξ η ζ, ,( )
m
∑=















v Kfµ J 1–

hm Hξm+( )∂ξNm ξ η ζ, ,( )

hm Hηm+( )∂ηNm ξ η ζ, ,( )

hm Hζm+( )∂ζNm ξ η ζ, ,( ) 
 
 
 
 

m
∑⋅ ⋅–=

h Hξ Hη Hζ, ,
m Hξm Hηm Hζm, ,

ρ̃

ρ̃ ρ̃mNm ξ η ζ, ,( )
m
∑=

ρ̃m m

ρ

ρ ρ0 1 α
Cs Co–
------------------ C Co–( ) β T To–( )–+=

C
T ρ̃

ρ̃ α
Cs Co–
------------------ C Co–( ) β T To–( )–=

ρ̃ α
Cs Co–
------------------ Nm Cm Co–( ) β Nm Tm To–( )

m
∑–

m
∑=
cbcilt=ö=OUV



NSK= `çåëáëíÉåí= îÉäçÅáíó= ~ééêçñáã~íáçå= áå= íÜÉ= ÑáåáíÉJÉäÉãÉåí= ëáãìä~íáçå= çÑ= ÇÉåëáíóJ

ÇÉéÉåÇÉåí=ã~ëë=~åÇ=ÜÉ~í=íê~åëéçêí=éêçÅÉëëÉë

(16-33)

in relation to the expansion (16-29).

NSKQKNKP =qÜÉ=åçÇ~ä=èì~åíáíáÉë= =
çÑ=íÜÉ=áåíÉÖê~ä=ÑìåÅíáçåë=

Linear triangular element in two dimensions
For a triangle we use the local coordinates as indicated
in Fig. 16.3.

The Jacobian  (16-19) appears independent of the
local coordinates  and the gravity  in
the local coordinates from (16-21) is a constant vector.
Accordingly, we can write

(16-34)

and similarly for . From the integrals we find the
nodal values for  and  as

(16-35a)

(16-35b)

Now we can express the gravity term (16-24) in local
coordinates as
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Figure 16.3 Local coordinates, shape functions and local derivatives for the
linear triangular element.
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(16-36)

representing a consistent approximation in which the
density is appropriately averaged in the gravitational
directions. 

Linear quadrilateral element in two dimensions
The local coordinates, the related shape functions and
the local derivatives are shown in Fig. 16.4 for the lin-
ear quadrilateral element. While for this element the
Jacobian  (16-19) is in general space-dependent, the
gravity vector (16-21) in local coordinates takes the
special form

(16-37)

Similarly to the above triangular element, we can com-
pute the integral functions  at the corner nodes

 for the linear quadrilateral element as

(16-38a)
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Figure 16.4 Local coordinates, shape functions and local derivatives for the linear quadrilateral
element.
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(16-38b)

The gravity term (16-24) written in local coordinates
yields

(16-39)

For the linear quadrilateral element the consistent
approximation (16-39) can be in recognized as the con-
sistent formulation previously introduced by Voss20,
where the gravity term is averaged in a directional
manner, so for instance

(16-40)

Linear pentahedral (triangular prismatic) element
in three dimensions
The pentahedral element and its local functions are
shown in Fig. 16.5. Specifying the Jacobian  (16-19)

the gravity vector (16-21) is in local coordinates

Hη 1 1–,–( ) Hη1
1
4
---eη– 1–( ) 3ρ̃1 ρ̃4+( )= =

Hη 1 1–,( ) Hη2
1
4
---– eη 1( ) 3 ρ̃2 ρ̃3+( )= =

Hη 1 1,( ) Hη3
1
4
---eη 1( ) ρ̃2 3ρ̃3+( )= =

Hη 1 1,–( ) Hη4
1
4
---eη 1–( ) ρ̃1 3ρ̃4+( )= = 
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Figure 16.5 Local coordinates, shape functions and local derivatives for the linear pentahedral element.
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The integral functions  at the corner nodes
 for the linear pentahedral element are then

(16-42a)

(16-42b)

(16-42c)
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Figure 16.6 Local coordinates, shape functions and local derivatives for the linear hexahedral element.

ξ

η

ζ

(-1,-1,-1)

(1,-1,-1) (1,1,-1)

(-1,-1,1)

(1,-1,1)

(1,1,1)

(-1,1,1)

(-1,1,-1)

1

2 3

4

5

6 7

8

∂ηN1
1
8
---– 1 ξ–( ) 1 ζ+( )=

∂ηN2
1
8
---– 1 ξ+( ) 1 ζ+( )=

∂ηN3
1
8
--- 1 ξ+( ) 1 ζ+( )=

∂ηN4
1
8
--- 1 ξ–( ) 1 ζ+( )=

∂ηN5
1
8
--- 1 ξ–( ) 1 ζ–( )–=

∂ηN6
1
8
---– 1 ξ+( ) 1 ζ–( )=

∂ηN7
1
8
--- 1 ξ+( ) 1 ζ–( )=

∂ηN8
1
8
--- 1 ξ–( ) 1 ζ–( )=

∂ζN1
1
8
--- 1 ξ–( ) 1 η–( )=

∂ζN2
1
8
--- 1 ξ+( ) 1 η–( )=

∂ζN3
1
8
--- 1 ξ+( ) 1 η+( )=

∂ζN4
1
8
--- 1 ξ–( ) 1 η+( )=

∂ζN5
1
8
--- 1 ξ–( ) 1 η–( )–=

∂ζN6
1
8
---– 1 ξ+( ) 1 η–( )=

∂ζN7
1
8
---– 1 ξ+( ) 1 η+( )=

∂ζN8
1
8
--- 1 ξ–( ) 1 η+( )–=
cbcilt=ö=OVP



NSK= `çåëáëíÉåí= îÉäçÅáíó= ~ééêçñáã~íáçå= áå= íÜÉ= ÑáåáíÉJÉäÉãÉåí= ëáãìä~íáçå= çÑ= ÇÉåëáíóJ

ÇÉéÉåÇÉåí=ã~ëë=~åÇ=ÜÉ~í=íê~åëéçêí=éêçÅÉëëÉë

Linear hexahedral (brick) element in three dimen-
sions
The hexahedral element and its local functions are dis-
played in Fig. 16.6.
The gravity vector (16-21) for this element is in local
coordinates

(16-43)

The integral functions  at the corner nodes
 for the linear hexahedral element can be derived as

(16-44a)

(16-44b)

(16-44c)

For the hexahedral (brick) element the consistent for-
mulation of the gravity term in form of the integral
functions  (cf. (16-44a), (16-44b) and (16-
44c), respectively), is equivalent to the formulation
given by Leijnse17. This should be exemplified for the

-component of the gravity term:
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(16-45)

NSKQKO `çåíáåìçìë= ÅçåëáëíÉåí= îÉäçÅáJ
íáÉë

The computation of the consistent velocities (16-28)
is performed elementwise in a standard manner, i.e.,

(16-46)

by using (16-21)

(16-47)

for the local gravity component in evaluating the nodal
integral functions  according to (16-
35a)-(16-35b), (16-38a)-(16-38b), (16-42a)-(16-42c)
and (16-44a)-(16-44c). In (16-47) and (16-46) the Jaco-
bian  and the global derivatives

 are evaluated at the Gauss
points  for each element .

The element-by-element technique (16-46) leads
naturally to a consistent velocity field, which is in gen-
eral discontinuous at the nodes . To obtain continu-

ous velocities a local smoothing technique such as
described in the Appendix B can be easily applied.
Obviously, the smoothing procedure has no effect on
the consistency of the velocity. Since the velocities

 for each element  are always consistent at the
node  an element-patch-averaged velocity

must be consistent too.

NSKR bñ~ãéäÉë

NSKRKN eóÇêçëí~íáÅ= ÅçåÇáíáçå= áå= ~
ÅäçëÉÇ=éçêçìë=Äçñ

Let us consider a rectangular closed domain as
shown in Fig. 16.7. At initial time a stable saltwater
layer with a salinity (concentration) of  exists
below freshwater with  separated by a hor-
izontal sharp interface in the middle of the domain. The
domain is impervious with respect to both the flow and
the mass transport. The fluid density contrast 
defined by

(16-48)

amounts to a value of 0.03.
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The problem is hydrostatic over all times and the
fluid motion within the box should be zero or, in the
numerical sense, negligibly small. Due to the molecu-
lar diffusion  the saltwater mixes and the initially
sharp saltwater interface (narrow transition zone)
spreads in time. This process must be independent of

the density effect. Accordingly, we have to compare the
results of the saltwater interface spreading for the case
without density coupling against the cases, where den-
sity effects are included. As a reference solution we
compute the problem for  based on a fine tempo-
ral and spatial discretization.
We simulated the density-dependent problem for quad-
rilateral and triangular meshes both in two and three
dimensions by using the different velocity approxima-
tions. The findings are practically the same to that
depicted in Fig. 16.8 for the two-dimensional quadrilat-
eral elements.

The new formulation for the consistent velocity
approximation by the Frolkovic-Knabner method
agrees very well with the reference solution. We tested
both without dispersion ( ) and with dis-
persion effects ( ). The results are
identical. In contrast, the old formulation which is
based on a locally smoothed nonconsistent velocity
approximation gives erroneous results in form of a
smeared density profile depart from the reference solu-
tion. Expectedly, this effects increases if dispersion
( ) is taken into account.

It is obvious the old formulation computes spurious
local velocities at the interface nodes which lead to an
artificially increased spreading of the salinity which
has an effect similar to numerical dispersion. It
becomes clear if we magnify the local velocities of the
interface node at beginning of the simulation as illus-
trated in Fig. 16.9. The old formulation gives spurious
velocities at the local points of the interface in the order
of about , while outside the interface the
nodal velocities are very small in order of only

. In contrast, the velocities for the new for-
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 m initial saltwater interface
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z
y

K 10 4–  m s 1–=
C Co 0= =

α 0.03=
C Cs=

Dd 10 8–  m2s 1–=

ε 0.3=

Figure 16.7 Cross-sectional view of the initially strat-
ified saltwater below freshwater problem in a closed
porous box.
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mulation remain generally small in all points of the
domain in the order of about , which repre-
sents the numerical noise in the velocity field for this

type of problem.
10 7–  md 1–

Figure 16.8 Computed density profiles  at time 
for different solutions using quadrilateral elements: Reference solution is obtained without density
effects for a fine vertical mesh; the other solutions are simulated on an uniform 32x64 mesh of
quadrilateral elements: new formulation represents the Frolkovic-Knabner algorithm for consis-
tent velocities combined with local smoothing, old formulation is the local smoothing of the basi-
cally nonconsistent velocities.
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The Elder problem describes a free convection pro-
cess in a vertical cross-section which is extensively
studied in past by various authors in using different
numerical methods1,5,6,10,11,21. It is defined in Fig. 16.10
with respect to a saline problem type so as basically
proposed by Voss and Souza21.

The Elder problem is studied for a (solutal) Rayleigh

old formulation new formulation

Figure 16.9 Local velocities at the saltwater interface computed by the old versus the new formulation.

Figure 16.10 Definition of the two-dimensional Elder prob-
lem and the used symmetric half model domain.
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number Ra = 400, where Ra is defined as

(16-49)

(for more details see for instance6,14).

Recently, Frolkovic and De Schepper10 presented
new results for the Elder problem. They achieved grid
convergence by a systematical refinement of the mesh
for the symmetric half of the domain (Fig. 16.10) using
a grid level  in the range of 4 to 8. For an uniform dis-
cretization by quadrilateral elements the number of ele-
ments of the half domain is given by

(16-50)

Frolkovic and De Schepper’s findings have been con-
firmed by FEFLOW computations, however, based on
the old formulation of the velocity approximation,
where grid levels between 4 and 9 were applied. Now,
it is interesting to see the effect of the new formulation
of the consistent velocity approximation on these
results. A comparison between the two formulations is
shown in Fig. 16.11 for the Elder problem at a grid
level . As seen there are only slight differences in
the salinity and streamline patterns which have practi-
cally no effect on the history of the cellular convection
process. This means the numerical quality of the veloc-
ity field for the old and the new formulation is effi-
ciently the same for a problem where the density
contrast (say Rayleigh number Ra) is moderate.

Ra α K d⋅⋅
ε Dd⋅

-------------------=

l

ne 2 4l⋅=

l 7=

Figure 16.11 Old versus new formulation of the velocity
approximation for the Elder problem at grid level :
salinities (0.2, 0.4, 0.6 and 0.8 isolines) and streamline pat-
terns for different times t .

l 7=

t = 2.5y

t = 5y

t = 10y

t = 20y

old formulation new formulation
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The saltpool problem has been introduced by
Oswald18. It represents a three-dimensional saltwater
upconing process in a cubic laboratory box under the
influence on density and hydrodynamic dispersion. A
stable layering of saltwater below freshwater is consid-
ered in time for two cases of density: (1) low density of
1% mass fraction and (2) high density of 10% mass
fraction. The problem is defined in Fig. 16.12 and the
parameters are listed in Tab. 16.1. A cube of side length
0.2 m is filled with a homogeneous porous medium of
porosity . At initial time saltwater is layered below
freshwater forming a horizontal narrow transition zone.
The cubic box is recharged with freshwater through a
single inflow hole at a constant rate . Through the
outflow hole water discharges with a variable salinity.
An important outcome of the laboratory experiments
are the breakthrough curves of salinity at the outflow
hole. It is a challenging task2 to model these break-
through behavior.

The problem is difficult caused by very small dis-
persivities  and a high density contrast particu-
larly for the high density case with a 10% mass fraction
of saltwater. Salinity-dependent viscosity effects4 have
to be taken into account too. The mixing concentration
at the outflow is measured at a small magnitude
amounting in the order to  and  related to maxi-
mum salinity  for the low and the high density case,
respectively.

The saltpool problem has been modeled by various
authors2,16,19 with different success. The best agree-
ments with the measurements have been recently
achieved by Johannsen et al.16, who used the above
new formulation for the consistent velocity approxima-
tion in the d3f code, and additionally, however, adjusted
some parameters within accepted bounds. It was shown
that very fine meshes (up to about 17 million nodal
points) are required to model the high density case with
a sufficient accuracy. A hierarchy of regular meshes
consisting of hexahedral elements up to grid level

 has been studied, where the number of elements
is

(16-51)

In the present simulation we employ meshes of only
moderate sizes as listed in Tab. 16.2. Both a structured
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Figure 16.12 Definition of the saltpool problem.
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mesh of hexahedral elements with a grid level of 6 and
an unstructured mesh of pentahedral elements for only
the symmetric half which is partially refined at the out-
let are simulated. For the computations the Galerkin-
FEM without any upwind and the Adams-Bashforth/

trapezoid rule with adaptive time stepping and one-step
Newton are applied, that means the numerical results
will be second order accurate both spatially and tempo-
rarily.

Table 16.1 Parameters of the saltpool problem

quantity symbol
magnitude

unitlow density high density

cell height

cell width

cell depth

opening width

initial freshwater height

initial saltwater height

hydraulic conductivity

solute expansion coefficient (relative 
density difference)

1

diffusion coefficient

longitudinal dispersivity

transverse dispersivity

porosity 1

fluid compressibility

inflow/outflow rate

variable fluid viscosity4

H 0.2 m

B 0.2 m

D 0.2 m

a 10 3– m

H1 0.14 m

H2 0.06 m

K
kρog

µo
------------= 97.73 10 4–⋅ ms 1–

α
ρs ρo–

ρo
-----------------= 76.0 10 4–⋅ 735.0 10 4–⋅

Dd 1.0 10 9–⋅ m2s 1–

βL 1.2 10 3–⋅ m

βT 1.2 10 4–⋅ m

ε 0.372

So 0.0 m 1–

Q 1.89 10 6–⋅
0.163296

1.83 10 6–⋅
0.158112

m3s 1–

m3d 1–

µ µo 1 1.85ω 4.1ω2 44.5ω3 )+  –+(=

ω C ρo    mass fraction⁄=
cbcilt=ö=PMN
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Table 16.2 Used meshes for the saltpool problem

type view close-up at the outlet mesh characteristic 

A

regular mesh, hexahedral elements, 
2D-view, level l = 6

3D-view

nea = 262,144
npb = 274,625

c =  mm
d =  mm
e =  mm

a hc 3.125
hd 3.125
hz 3.125
PMO=ö=tÜáíÉ=m~éÉêë=J=sçäK=f
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The old formulation of the velocity approximation
(local smoothing of nonconsistent velocities) com-
pletely failed in the saltpool problem for the high den-
sity case. This was already observed by Oswald et al.19

where the saltwater mixing concentration at the outlet
was significantly overestimated in this case. Such a bad
behavior is depicted in Fig. 16.13 showing an overesti-

mation of more than 20 times with respect to the exper-
imental salinity for the high density case at the outlet if
using the old formulation with the mesh A. On the
other hand, the low density case agrees quite well with
the experiments if using the old formulation as seen in
Fig. 16.13.

B

Irregular mesh, pentahedral elements, 
2D-view, symmetric half

3D-view

ne = 262,912
np = 140,010

 =  mm
 =  mm
 =  mm

a. total number of elements
b. total number of nodes
c. characteristic horizontal element length in the central region
d. characteristic horizontal element length at outflow/inflow boundaries
e. characteristic vertical element length

Table 16.2 Used meshes for the saltpool problem (continued)

type view close-up at the outlet mesh characteristic 

a
hc 3.125
hd 0.552
hz 3.125
cbcilt=ö=PMP
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In using the new consistent velocity approximation
the computed breakthrough curves are now in reason-
able agreement with the experiments as shown in Figs.
16.14 and 16.15 for both the low and the high density
case. We note that the parameters are not adjusted dur-
ing the present simulations. Apparently, an adjustment
of the parameters, particularly the transverse dispersiv-
ity , porosity  and conductivity , is required to
attain a better match with the experiments so as per-
formed by Johannsen et al.16. Otherwise, for the high
density case more refined meshes seem to be necessary
to improve the breakthrough behavior at the outlet.

Figure 16.13 Salinity breakthrough curves at the outlet for
the high and low density cases: Measured versus simulated
salinities for mesh A based on the old formulation of the
velocity approximation.
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Figure 16.14 Salinity breakthrough curves at the outlet for
the low density case: Measured versus simulated salinities
for mesh A and B based on the new formulation of the con-
sistent velocity approximation.
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Figure 16.15 Salinity breakthrough curves at the outlet for
the high density case: Measured versus simulated salinities
for mesh A and B based on the new formulation of the con-
sistent velocity approximation.
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Figure 16.16 illustrates the salinity distributions
computed by using the new consistent velocity approx-
imation for the low and the high density cases. It
reveals the role of the density effects in the mixing and
dilution of saltwater controlled mainly by hydrody-
namic dispersion. If the case of the high density the
transition zone between saline and fresh water is signif-
icantly widened forming a ’diffusive upcone’ below the
outlet, however, at very low concentrations. This mix-
ing process is significantly influenced by the advective
and dispersive forces acting locally at the saltwater-
freshwater interface which is initially very narrow. A
highly accurate and a fully consistent velocity approxi-
mation has proven a fundamental requirement for a
successful solution of the saltpool problem at high den-
sity. Small local inconsistencies in the velocity field
would have dramatic consequences on the computa-
tional results.
cbcilt=ö=PMR
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Figure 16.16 Cross-sectional salinity (above) and 50% salinity isosurface (below) at t = 160 min for the low and high
density case simulated by the new formulation of the consistent velocity approximation (mesh A).
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For density-dependent flow and transport processes
a new formulation of a consistent velocity approxima-
tions developed by Frolkovic8 and Knabner12 is incor-
porated in the FEFLOW code. This became necessary
to eliminate errors for high density contrasts arising
distinctly in simulating the saltpool problem. The old
formulation which is based on a smoothing technique
of basically nonconsistent velocities can give lacks in
the consistency of velocities at locations of high den-
sity gradients. For the saltpool problem at high density
it has shown dramatic consequences in the results.
Though the saltpool problem is somewhat specific and
extreme the new technique is to be recommended (and
actually now the default option) for all further density-
dependent problems.

The question arises why the lack in the old formula-
tion was not noticed in previous studies (cf.,3-8). The
answer becomes clear in the light of the above compar-
isons made between the old and the new formulation:
Most of the previous studies focussed on moderate
density effects and flow situations which are different
to that of the saltpool problem where a dispersion-con-
trolled flushing over a narrow transition zone is domi-
nant. Otherwise we should mention that reliable
quantitative results for a saltwater mixing process
under density effects were not available before
Oswald’s work18.

The recomputation of density-dependent problems
gives under moderate parameter conditions no remark-
able differences between the old and the new formula-
tions so as exemplified above for the Elder problem
where the results are in close agreement in both formu-

lations with the recent findings presented by Frolkovic
and De Schepper10. However, if the density contrasts
are much higher and mixing processes over stable nar-
row saltwater-freshwater transition zones are important
only the new formulation of an exact local consistency
can guarantee a quantitatively (and physically) correct
solution. 
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Latin symbols

 concentration and reference
concentration (salinity),
respectively;
maximum concentration;
specific heat capacity of fluid;
tensor of mechanical dispersion;
molecular diffusion in the porous
medium;
internal (thermal) energy density for
fluid and solid, respectively;

1 gravitational unit vector with respect
to global coordinates;

1 gravitational unit vector with respect
to local coordinates;

1 fluid viscosity relation function;

C Co, ML 3–

Cs ML 3–

c L2T 2– Θ 1–

D L2T 1–

Dd L2T 1–

Ef Es, L2T 2–

e

e ξ η ζ, ,( )

fµ
PMU=ö=tÜáíÉ=m~éÉêë=J=sçäK=f
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gravity vector in global coordinate
directions;
gravitational acceleration;
integral functions related to local
coordinates;
hydraulic (piezometric) head;

1 unit vector;
Jacobian transformation matrix;
Fickian mass flux vector;
Fourierian thermal energy flux
vector;
tensor of hydraulic conductivity;
tensor of permeability for the porous
medium;
grid level;
mass matrix;
finite element shape function;
finite element shape function at node
m;
number of elements;
number of nodes (points);
number of nodal contributions at an
element patch;
fluid pressure;
fluid discharge;
bulk fluid flow sink/source;
bulk mass sink/source;
bulk thermal sink/source;
storage coefficient;
temperature and reference
temperature, respectively;
time;
Darcy velocity (flux) vector;
global Cartesian coordinates;

RHS vector;
elevation above a reference datum;

Greek symbols

1 solutal expansion coefficient;
thermal expansion coefficient;
longitudinal and transverse
dispersivity, respectively;

1 porosity;
variable;
tensor of thermal hydrodynamic
dispersion of fluid phase;
thermal conductivity for fluid and
solid, respectively;

 dynamic viscosity and reference
dynamic viscosity of fluid,
respectively;
fluid density and reference fluid
density, respectively;

1 relative fluid density ;
solid density;
local coordinates;
functional;
domain;

1 mass fraction;
partial differentiation with respect to
the global -coordinate ;
partial differentiation with respect to
the local -coordinate ;
Nabla (vector) operator with respect
to global coordinates;
Nabla (vector) operator with respect
to local coordinates;

g LT 2–

g LT 2–

Hξ Hη Hζ, , L

h L
I
J
JC ML 2– T 1–

JE MT 3–

K LT 1–

k L2

l
Mmn
N
Nm

ne
np
np

p ML 1– T 2–

Q L3T 1–

Qρ ML 3– T 1–

QC ML 3– T 1–

QE ML 1– T 3–

So L 1–

T To, Θ

t T
v LT 1–

x y z, , L

Zm
z L

α
β Θ 1–

βL βT, L

ε
θ
Λ MLT 3– Θ 1–

λf λs, MLT 3– Θ 1–

µ µo, ML 1– T 2–

ρ ρo, ML 3–

ρ̃ ρ ρo–( )= ρo⁄( )

ρs ML 3–

ξ η ζ, , L
Φ
Ω
ω
∂z L 1–

z z∂
∂= 

 

∂ξ L 1–

ξ
ξ∂

∂= 
 

∇ L 1–

∇ ξ η ζ, ,( ) L 1–
cbcilt=ö=PMV
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Subscripts

nodal indices;
reference value;
Gauss-point related;
global coordinate directions;
local coordinate directions;

Superscripts

element;
fluid (water) phase;
solid phase;

^ééÉåÇáñ=_

däçÄ~ä= ëãççíÜáåÖ= EéêçàÉÅíáçåF= çÑ= ÇáëJ
Åçåíáåìçìë=îÉäçÅáíáÉë

A global approximation of the smoothed Darcy
velocities can be written as

(B1)

Assume that we have an unsmoothed (discontinuous)
velocity field , where either nonconsistent or
consistent velocities occur. Then the smooth function
which provides a best fit in the least squares sense over
the domain  can be obtained from a minimization of
the functional

(B2)

The minimization procedure

(B3)

or

(B4)

results in a system of linear equations to solve the
smoothed (continuous) velocities , viz.,

(B5)

where  represents the mass matrix and  is the
RHS involving the unsmoothed relations. They are
formed in the finite element assembling procedure as

(B6)

and, by inserting the Darcy velocity components writ-
ten for the hydraulic head  from (16-2), as

(B7)

Note, the least square approximation of global smooth-
ing (B7) is equivalent to a Galerkin weighting
procedure22.

m n,
o
p
x y z, ,
ξ η ζ, ,

e
f
s

v x y z, ,( ) Nmvm
m
∑=

v∗ x y z, ,( )

Ω

Φ v v∗–( )2
Min⇒

Ω
∫=

∂Φ
∂vm
--------- 2 v v∗–( ) ∂v

∂vm
---------

Ω
∫ 0= = for        m = 1, 2, ...

Nm v v∗–( )
Ω
∫ 0=

v

Mmnvn
n
∑ Zm=

Mmn Zm

Mmn NmNn
Ω
∫=

h

Zm Nmv∗
Ω
∫ Nm Kfµ ∇h ρ̃e+( )⋅[ ]

Ω
∫–= =
PNM=ö=tÜáíÉ=m~éÉêë=J=sçäK=f



NSKS=`äçëìêÉ
A cost-effective alternative appears if the mass
matrix  is lumped by an row-sum or diagonal scal-
ing

(B8)

without need to solve the linear equation system (B5).
Mass lumping can be shown to be equivalent to an
area-weighted averaging for nodal values.

içÅ~ä= ëãççíÜáåÖ= EéêçàÉÅíáçåF= çÑ= ÇáëJ
Åçåíáåìçìë=îÉäçÅáíáÉë

Unlike global smoothing, there is an efficient way
to smooth velocity fields by using only individual ele-
ment information. This is termed as local smoothing15

and provides a simple nodal averaging based on the
number of elements joined at a given node of an ele-
ment patch. Among several approaches suggested
FEFLOW employs following two-step local technique:

(Step 1) The discontinuous velocity in each element 

(B9)

is computed at the Gauss points  with given approxi-
mations for the head  and density  at ele-
ment level . Note, the velocity (B9) can also be
computed in a consistent approximation as described
above (cf. (16-46)).

(Step 2) The values at the Gauss points are assigned to
the nearest corner node . Each nodal contribu-
tion is summed up and, at the end, the nodal values are
averaged by their number of nodal contributions 
from the patch sharing the node 

   (B10)

Mmn

Mmn

Nm Nn∑( )
Ω
∫

0





= m n=
m n≠

e

vp
e Kefµ

e ∇h ρ̃e+( )⋅–=

p
h ρ̃ ρ̃ C T,( )=

e

p m→

np
m

vm vm
e

e

patch
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np⁄=
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ABSTRACT
This work continues the analysis of variable density flow in
groundwater systems. It focuses on both thermohaline (dou-
ble-diffusive) and 3D buoyancy-driven convection pro-
cesses. The finite-element method is utilized to tackle these
complex nonlinear problems in two and three dimensions.
The preferred numerical approaches are discussed regarding
appropriate basic formulations, balance-consistent discreti-
zation techniques for derivative quantities, extension of the
Boussinesq approximation, proper constraint conditions,
time marching schemes, and computational strategies for
solving large systems. Applications are presented for the
thermohaline Elder and salt dome problem as well as for the
3D extension of the Elder problem with and without thermo-
haline effects and a 3D Bénard convection process. The sim-
ulations are performed by using the package FEFLOW.
Conclusions are drawn with respect to numerical efforts and
the appropriateness for practical needs.

Key words: porous media, variable density flow, finite ele-
ment method, double-diffusive convection, thermohaline
convec-tion, three-dimensional Bénard convection
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Latin symbols

1  aspect ratio.
1 buoyancy ratio (Turner number).

concentration and reference
concentration, respectively.
maximum concentration.
specific heat capacity of fluid and
solid, respectively.
medium molecular diffusion
coefficient of fluid.
tensor of hydrodynamic dispersion.
thickness (height).
extent.

1 components of the gravitational unit
vector.

1 constitutive viscosity relation
function.
gravitational acceleration.
hydraulic head.

1  symmetric intrusion ratio.
isotropic hydraulic conductivity
constant.
tensor of hydraulic conductivity.
tensor of permeability.

A L d⁄
B
C Co, ML 3–

Cs ML 3–

cf cs, L2T 2– Θ 1–

Dd L2T 1–

Dij L2T 1–

d L
e L
ej

fµ

g LT 2–

h L
I e L⁄
K LT 1–

Kij LT 1–

kij L2
NT
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length.
1 Lewis number.
1 basis (shape) function at node m.
1 normal unit vector (positive

outward).
fluid pressure.
sink/source of contaminant mass.
lumped balance flux of solute
(positive inward).
extended Boussinesq approximation
term.
sink/source of heat.
lumped balance flux of heat
(positive inward).
sink/source of fluid.
prescribed normal boundary mass
flux (positive outward).
Darcy flux of fluid.
normal component of the conductive
part of the heat flux (positive
outward).
normal component of the dispersive
part of the mass flux (positive
outward).
normal component of the convective
plus dispersive part of the mass flux
(positive outward).
normal component of the Darcy
fluid flux (positive outward).

1 specific retardation factor and its
time derivative, respectively.

1 solutal and thermal Rayleigh
number, respectively.

1 critical Rayleigh number.
specific storage coefficient
(compressibility).

temperature and reference
temperature, respectively.

 absolute specific Darcy fluid
flux.
spatial weighting function and
weighting function at node m,
respectively.
Cartesian coordinates, Eulerian
spatial coordinate vector.

Greek symbols

1 fluid density difference ratio.
longitudinal and transverse
thermodispersivity, respectively.
fluid expansion coefficient.
coefficients of longitudinal and
transverse dispersivity of solute,
respectively.
boundary.

1 error tolerance measure.
concentration difference.
temperature difference.
time step width at time plane n.

1 porosity.
chemical decay rate.
thermal diffusivity.
tensor of hydrodynamic
thermodispersion.
tensor of thermal conductivity.
tensor of mechanical
thermodispersion.
thermal conductivity for fluid and
solid, respectively.
dynamic fluid viscosity and
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reference viscosity, respectively.
fluid density and reference density,
respectively.
solid density.

1  normalized
temperature, T in .
linear (Henry) or nonlinear
(Freundlich, Langmuir) sorptivity
function.

1  mass fraction.
domain.

Subscripts

spatial Eulerian coordinate
(Einstein’s summation convention).
direction of gravity in the Cartesian
coordinate system.
nodal points (Einstein’s summation
convention).
time plane or normal direction.
reference value.
Gauss point.

Superscripts

finite element.
fluid phase.
predictor value.
prescribed boundary value.
solid phase.

NTKN fåíêçÇìÅíáçå

Thermohaline (or double-diffusive) convection pro-
cesses are connected with the presence of heteroge-
neous temperature and concentration fields. Thus,
convective currents can arise from heat and salinity
gradients acting simultaneously (e.g., Nield53, Rubin59,
Rubin and Roth60, Tyvand73, Trevisan and Bejan72,
Murray and Chen52, Shen67, Angirasa and Srinivasan2,
Nield and Bejan54, Brandt and Fernando7). Geophysical
applications of thermohaline models can be found for
instance in the field of geothermics and waste disposal
in salt formations (Evans and Nunn24). Thermohaline
effects are important for the production of mineralized
thermal water, the reinjection of cooled brine into
heated deep aquifers connected with geothermal supply
technologies, and groundwater movement near salt
domes.

Usually, the phenomena of double-diffusive con-
vection (DDC) are related to the presence of both (1) at
least, two properties (substances, thermal energy) strat-
ifying the fluid and having different diffusivities and
(2) opposing effects on the vertical density gradient7.
Accordingly, different regimes can be distinguished: A
diffusive regime occurs if the destabilizing potential
comes from the property with the larger diffusivity,
e.g., a stable salinity gradient is heated from below. On
the other hand, a finger regime exists if the driving
(destabilizing) forces are caused by the more slowly
diffusing property, e.g. hot saline fluid on top of a sta-
ble temperature gradient. Both regimes can also appear
in a differentiated form referred here to as a mixed
DDC regime if both properties can destabilize and
affect the fluid during the temporal development, e.g., a
heavy cool solute sinks down to a region which is

ρf ρo
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heated from below, so a finger regime at the beginning
converges more to a diffusive regime over time.

The first part of the paper by Kolditz et al.43 mainly
focused on the verification of numerical schemes
against available benchmarks for density-coupled con-
vection processes. Established test examples (e.g., the
Henry problem, Elder problem, and salt dome prob-
lem) are only 2D and single-diffusive (either mass or
heat-driven) convection processes. But even for these
academic, seemingly simplistic 2D problems a number
of discrepancies appear, still for most recent findings55.
It has been shown43 that numerical schemes with their
spatial and temporal resolutions can essentially influ-
ence computational results. Figure 17.1 recalls the con-
tradictory results for the Elder problem as well as the
salt dome test case obtained by different authors. While
Elder23 and the recomputation done by Voss and
Souza75 used obviously overdiffusive schemes on rela-
tively coarse grids, newer findings43,55 with refined
spatial and temporal discretizations reveal convection
pattern which are distinctly different from former
work. The flow field indicates now a central upwelling
rather than downwelling. More dramatically, Olden-
burg and Pruess55 recently presented new results for the
salt dome problem (HYDROCOIN level 1 case 5).
They believed to achieve much more accurate solutions
for this example. But, their results are fully outside of
all results known to date (Fig. 17.1b). All the more,
their ’swept forward-type’ solutions are suspiciously
very near to the pure freshwater case without any den-
sity coupling, so TOUGH2’s results become widely
questionable for problems involving velocity-depen-
dent dispersion effects. A possible reason for this dis-
crepancy is recently indicated by the work of Konikow
et al.44. They showed that a salinity pattern of a swept

forward type appears if constrained boundary condi-
tions for the salt dome interface are applied (allowing
only dispersive release of brine and precluding any
convective release of brine). While the study by Koni-
kow et al.44 is more physically motivated it also gives
an indication of the importance of a mathematically
(numerically) correct handling of boundary conditions
for this type of problems, independently of their physi-
cal appropriateness or not.

In the past, Galerkin methods, finite differences
(FDM) and finite element methods (FEM) have been
employed to solve the nonlinear coupled balance equa-
tions for variable density groundwater problems in 2D.
Pinder and Cooper57 used the method of characteristics.
Finite elements based on a primitive u-v-p-variable for-
mulation are utilized by Segol et al.66, Huyakorn and
Taylor38 and Diersch12,14,15. However, the subsequent
works desisted from primitive variable approaches
because their increased accuracy was shown to be in
disproportion to the increased numerical effort and
inherent restrictions in formulating boundary condi-
tions. Accordingly, standard formulations succeeded
which are based on substituting the Darcy law in the
primary balance equations. Recent works devoted to
this subject are presented, among others, by Frind26,
Diersch et al.16, Voss and Souza75, Diersch17, Hassani-
zadeh and Leijnse31, Herbert et al.32, Galeati et al.26,
Schincariol et al.63, Fan and Kahawita25, Oldenburg
and Pruess55, Croucher and O’Sullivan12, Zhang and
Schwartz79, and Kolditz42. On the other hand, three-
dimensional applications are related to field problems
as given by Huyakorn et al.39, Kakinuma et al.40 and
Xue et al.76 and do not consider rigorously the density
coupling mechanisms. However, there are prior theo-
retical and numerical works in three-dimensional free
PNS=ö=tÜáíÉ=m~éÉêë=J=sçäK=f
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convection problems mostly focused on the (cavity)
Horton-Rogers-Lapwood (HRL) problem54 presented
by Holst and Aziz34, Zebib and Kassoy78, Straus and
Schubert69,70, Horne36, Schubert and Straus64, Caltagi-

rone et al.9, Chan and Banerjee9, and Beukema and
Bruin6.

It is obvious from the above that the extension to
thermohaline and/or 3D density-coupled convection
problems will significantly increase the importance of
both getting a physically equivalent process description
in the discretized models and overcoming the numeri-
cal burden, particularly if aiming at practical problems.

In the following, relevant numerical aspects are dis-
cussed in the context of the FEM. The developed solu-
tion strategies are implemented in the 3D finite-
element simulator FEFLOW20. FEFLOW is employed
to study 2D and 3D, thermohaline and buoyancy-
driven convection problems from various perspectives.

Figure 17.1 a) Simulated concentration pattern at 20 years for the Elder problem with a Rayleigh number of 400:
(left) results obtained by the SUTRA simulator (Voss and Souza75), (solid curves) and by Elder23 (dashed curves),
and (right) computed by the FEFLOW simulator in agreement with the results attained by ROCKFLOW and
TOUGH2 as discussed by Kolditz et al.43, and b) salt dome test case: (left) TOUGH2 results55 against (right)
FEFLOW (and ROCKFLOW) findings43 for steady-state with results55 against (right) FEFLOW (and ROCK-
FLOW) findings43 for steady-state with mechanical dispersion of  = 20 m and  = 2 m.βL βT

a)

b)
cbcilt=ö=PNT
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First, we expand the 2D Elder and salt dome problems
to thermohaline processes in order to study thermal
influences on groundwater-brine flow systems. Second,
we extend the original Elder problem to 3D for both
single-diffusive (solutal) and double-diffusive (thermo-
haline) convection processes to analyze the evolution
of 3D pattern formations in comparison with the 2D
counterparts. Finally, we devote to a Bénard problem as
an example of more complex 3D multicellular convec-
tion in a porous layer. The presented results for thermo-
haline and solutal convection systems may provide
examples for a comparison analysis in 2D and 3D by
using alternative approaches.

NTKO _~ëáÅ=bèì~íáçåë

The governing equations for the coupled mass and
heat transport in groundwater (saturated porous
medium) are derived from the basic conservation prin-
ciples for mass, linear momentum, and energy43. The
following nonlinear system finally results20,22 which
has to be solved in two and three dimensions

(17-1)

(17-2)

(17-3)

(17-4)

To close the set of balance equations the following con-
stitutive formulations are additionally needed:

(17-5)

As seen a hydraulic-head-conductivity-(h-K)-form
of the Darcy equation (17-2), instead of the pressure-
permeability-(p-k)-form, is preferred in FEFLOW
which usually permits more convenient formulations of
boundary conditions and parameter relations for appli-
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cations in subsurface hydrology. As the result, the ten-
sor of hydraulic conductivity  refers to the reference
density  and the reference viscosity , which are,
on the other hand, related to the proper reference condi-
tions for the concentration  and the temperature .
For such a formulation a viscosity relation function ,
in eqn (17-5), appears to include viscosity effects in
Darcy’s law (17-2). The following constitutive polyno-
mial expression is used

(17-6)

which is a combination of empirical relationships given
by Lever and Jackson48 for high-concentration saltwa-
ter and by Mercer and Pinder49 for geothermal pro-
cesses in the range between 0 and 300 . In practice,
the expansion coefficients  and  of eqn (17-5) are in
the most cases considered as constant54. For the present
investigations we shall also use this assumption to
maintain an unified parameter basis for comparison
purposes. However, it should be mentioned in a geo-
thermal context where large temperature variations
occur and buoyancy forces are dominant, this approach
is often not appropriate56. Based on the theoretical
framework done by Perrochet56 FEFLOW is also capa-
ble of handling a nonlinear variable thermal expansion

 in form of a 5th order polynomial to match the
fluid density variation over a wide temperature range

with a high accuracy and to satisfy the zero condition
(density anomaly) at 4 . For more details see
Diersch22.

The divergent form and the convective form of the
contaminant mass transport equation (17-3) (the energy
balance equation (17-4) has already been led to a con-
vective form after introducing the temperature) are
physically equivalent. Commonly, the convective form
of the transport equation is preferred for numerical
approximations because simpler boundary-value prob-
lems are accessible.

It is known28,43 the Boussinesq approximation
becomes insufficient for large density variations (e.g.,
at high-concentration brines or high-temperature gradi-
ents). The main difference between the Boussinesq
approximation and the actual balance quantities is
expressed by the additional term  in the con-
tinuity equation (17-1) according to

(17-7)

which is neglected if the Boussinesq approximation is
assumed. The first term in eqn (17-7) can be omitted if
the temporal changes in concentration and/or tempera-
ture vanish. However, even the evolving features of a
convection process may be thoroughly affected at
higher density contrasts (problems of bifurcation, phys-
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ical instability and hydrodynamic pattern formation).
The second term of eqn (17-7) can be ignored if the
density gradient is essentially orthogonal to the veloc-
ity vector. This is quite often not a tolerable assump-
tion. Note, the expression (17-7) has to be modified in
the case a nonlinear variable thermal expansion 22.

NTKP pé~íá~ä=aáëÅêÉíáò~íáçå

The above equations (17-1) to (17-4) are discretized
by the FEM using bilinear or biquadratic elements for
2D, and prismatic pentahedral trilinear or hexahedral
trilinear and triquadratic elements for 3D. Finally, it
yields the following coupled matrix system:

(17-8)

where h, q, C and T represent the resulting vectors of
nodal hydraulic head, Darcy fluxes, contaminant con-
centration and temperature, respectively. The super-
posed dot means differentiation with respect to time t.
The matrices S, A, O, P and U are symmetric and
sparse, while D and L are unsymmetric and sparse. The
remaining vectors F, B, R and W encompass the right-
hand sides (RHS) of eqns (17-1) to (17-4), respectively.
The main functional dependence is shown in parenthe-
sis.
The individual finite-element formulations of the
matrix system (17-8) as realized in FEFLOW are sum-
marized in Appendix A. Note, different formulations

result for the divergent and the convective forms of the
transport equations. Though physically equivalent,
they can deliver different numerical solutions due to
their different boundary-value formulations.

Another point of view is related to the numerical
evaluation of the Darcy fluxes q for a given discretiza-
tion. The success of a numerical solution for variable
density flow problems is essentially dependent on an
appropriate choice of suitable schemes for computing
derivative quantities from the Darcy equation.

NTKQ `çåíáåìçìë= ^ééêçñáã~J
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The substitution of Darcy fluxes (17-2) in the conti-
nuity equation (17-1) gives immediately an equation to
determine the unknown hydraulic head h according to
the weak formulation (A3) in Appendix A. If h is
known and assuming initial C and T distributions, the
fluxes q can be directly computed via Darcy’s equation
(17-2). However, a careful handling of derivative quan-
tities is required. As normally done in FEM, piecewise
continuous ( ) basis functions  (Appendix A) for
the hydraulic head h generate velocity fields q (using
derivatives of hydraulic head) that exhibit discontinui-
ties across element boundaries. It results in nonunique
values at nodal points. Particularly for buoyancy-influ-
enced flows, discontinuous (nonunique) velocities can
cause difficulties (spurious vertical velocities) in the
numerical solution due to inappropriate balance
approximation of the lower order term , behav-
ing constantly in an element for the case of linear basis
functions, and the higher order gravitational term

, varying linearly in an element for
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linear basis functions, of the RHS of Darcy equation
(17-2). This has already been addressed in previous
works29,32,75 and different numerical schemes were pro-
posed to overcome these problems.

Voss and Souza75 preferred for the SUTRA code in
2D a reduced order approximation of the buoyancy
term, actually the concentration is averaged in every
element, therefore, the pressure gradient and the con-
centration distribution have the same spatial variability,
practically constant (for linear basis functions). This is
called a consistent velocity evaluation. Leijnse46

showed that such a consistent velocity approximation
can be interpreted as an average of the local gravity
component in the local directions of a finite element. A
generalization of this spatial averaging has been
recently presented by Knabner and Frolkovic41.
Instead of reducing the approximations Herbert et al.32

introduced a mixed interpolation strategy in NAMMU
for 2D, where the pressure is approximated by qua-
dratic elements to obtain a linearly distributed pressure
gradient which becomes consistent with a linear distri-
bution of the concentration-dependent buoyancy term.
Clearly, quadratic basis functions increase the compu-
tational expense and, especially for 3D, an alternative
approach is preferable.

Taking into consideration that the discretized bal-
ance terms of the conservation equations provide gen-
erally a different spatial variability (compare the
’diffusion’ term against the ’convective’ term or a
’reactive’ term), a consistent approximation by the
FEM means that all terms have to be rigorously
weighted at nodal points. As the result, unique values
of even discontinuous variables are generated at nodal
points. This principle is consequently applied also to

the velocity evaluation and leads to approaches
referred to as smoothing techniques used in FEFLOW
for the present analysis. Lee et al.45 thoroughly dis-
cussed both global and local smoothing techniques for
derivative quantities. In this light, the weak form of the
Darcy equation (A4) in Appendix A can be recognized
as a global smoothing procedure which was introduced
in the water resources literature by Yeh77. Today,
smoothing techniques have an additional meaning for
adaptive methods to compute higher order solutions for
an error estimation21. Appendix B summarizes the
smoothing techniques available in FEFLOW and
appropriate for the present simulations of coupled phe-
nomena. While global derivative smoothing schemes
with a consistent mass matrix require a higher numeri-
cal effort, lumped mass smoothing algorithms as well
as simpler local smoothing schemes are the most cost-
effective approaches and have shown to be well-suited
for the present class of problems. The latter is to be rec-
ommended for large 3D problems.

Smoothed velocities of a higher-order approxima-
tion lead to a continuous distribution of all velocity
components in a mesh. As a consequence, continuous
fields also exist along material interfaces, e.g., between
media with different hydraulic conductivities, where an
interfacial nodal point shares these different media and,
naturally, a weighted average of the flux quantities
results. Leijnse46 pointed out that physically unrealistic
results can be obtained for cases where the conductiv-
ity in adjacent elements differ by more than two orders
of magnitude. Indeed, if utilizing such continuous
velocity fields from a mesh having an insufficiently
adapted interface discretization particle tracking proce-
dures can lead to poor results if starting pathlines near
such an interface location (a particle may effectively be
cbcilt=ö=PON
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propagated into media with low hydraulic conductiv-
ity). On the other hand, a discontinuous velocity field
approximation often gives significant problems when a
particle crosses an element. Then, particle can be
’caught’ in the interface due to components which have
opposite directions across an element edge as indicated
by Sauter and Beusen62, who introduced special transi-
tion elements with interpolated (smoothed) velocity
properties to overcome these difficulties. As the sum,
the higher-order approximation of continuous veloci-
ties is the most natural approach in the finite element
method and need not any ad-hoc techniques in adapt-
ing interface conditions, provided, however, the inter-
face is appropriately discretized. The necessity for a
continuous flow field approximation also in the context
of modeling heterogeneous media is thoroughly dis-
cussed in the work about mixed hybrid finite element
techniques presented by Mosé et al.51 followed by
recent discussions given by Cordes and Kinzelbach11

and Ackerer et al..

NTKR `çåëíê~áåíë= ~åÇ= oÉä~íÉÇ
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Constraints of boundary conditions can play an
important role in practical modeling of variable density
transport. Typically in saltwater enroachment prob-
lems, the boundary conditions of freshwater and salt-
water are dependent on the in/outflowing
characteristics essential to a correct mathematical for-
mulation. However, most prior works26,32,38,44,55,66,75 did
not consider such conditions in a rigorous manner. To
identify the problem let us consider, for instance, the
salt dome flow problem as schematized in Fig. 17.2.

Alternating boundary concentrations appear on the
top boundary depending on the dynamic process. As
long as water enters the domain it should have a pre-
scribed concentration of freshwater. However, if the
water leaves the domain (along the same upper bound-
ary) the concentration on this boundary is unknown
and should be computed. Such a description can be eas-
ily realized if the entire boundary section is assigned by
a freshwater boundary condition of 1st kind ( ),
and at the same time, the boundary will be imposed by
a constraint condition in form of a null minimum mass
flux . Such an arrangement guarantees that
the freshwater condition remains valid as long as the
convective mass flux, being concentration-dependent
due to the density variation, points into the domain.

A rigorous handling of such constraints is permitted
by a prescription of complementary conditions for each
boundary type20,22. For instance, the minimum and
maximum constraints of a Dirichlet-type concentration
will lead to additional conditions in the following form
(it reads: the imposed boundary condition  is

Figure 17.2 Application of transport constraints for saltwa-
ter intrusion in flowing groundwater over a salt dome.
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accepted only if the related mass balance flux  (and
the related hydraulic head ) is within given min-max
bounds, if not, these bounds have to be used as new
boundary conditions, where the boundary type has to
be changed from a 1st kind into a flux-type boundary
condition of a point sink/source )

(17-9)

where  is the mass balance flux at the boundary
point to be computed while the  condition is
imposed,  and  denote the prescribed time-
dependent maximum and minimum bounds, respec-
tively, and  represents a singular mass sink/source
to be set at the boundary point (node) instead of the
original 1st kind boundary condition. Similar expres-
sions exist for the other types of boundary conditions.
This procedure allows the control of concentration at
the boundary in dependence on both the balanced flow
conditions through the boundary (e.g., ) and
the location of possible free-surface conditions within
the bounds . The latter is very important for
complex mine flooding processes as studied by Diersch
et al.19.

The computed fluxes  represent lumped
(summed-up) mass balance fluxes at nodal points

(17-10)

Note, the balance quantities are defined positive
inward on . Actually, the specific balance fluxes 
are composed by their convective and dispersive parts
according to

(17-11)

In practice, it has been shown to be inappropriate to
include the total (convective plus dispersive) flux into
the procedure of controlling the constraint conditions
because the direction of dispersive fluxes is ambiguous
(e.g., the dispersive spreading also occurs against the
flow direction). Accordingly, the balance-based evalua-
tion of fluxes is exclusively related to the convective
mass fluxes:

(17-12)

giving unambiguously directional balance quantities.
Similar expressions can be obtained for the balance of
convective heat flux, viz.,

(17-13)
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The computation of the convective part of balance
fluxes at each controlling (nodal) point is performed
via a budget analysis in a postprocessing step. The
basic formulation used for computing the above bal-
ance quantities is derived in Appendix C.

NTKS qÉãéçê~ä= aáëÅêÉíáò~íáçå
~åÇ= fíÉê~íáîÉ= pçäìíáçå
mêçÅÉëë

In general, for more complex flow processes it can-
not be predicted which time steps are allowable with
respect to the accuracy requirements. Accordingly, a
predefined time step marching strategy is often inap-
propriate and inefficient. Alternatively, stable fully
implicit and semi-implicit two-step techniques known
as the GLS-(Gresho-Lee-Sani) predictor-corrector time
integrator6,30 with automatically controlled time step-
ping of first order by the Forward Euler/Backward
Euler (FE/BE) and of second order by the Adams-
Bashforth/Trapezoid Rule (AB/TR) have proven to be
powerful and accurate strategies, especially for strong
nonlinearities and complex situations. At each time
step, the convergence tolerance  directly governs the
time-step size. It provides a cost-effective method in
that the step size is increased whenever possible and
decreased only when necessary due to the error esti-
mates. The GLS scheme is thoroughly described
elsewhere6,17,18,30. Here, we will only address modified
features which are important in the context of the mul-
tiple coupling of equations and constraint computation
for the present tasks. Note, a full Newton method is
embedded into the AB/TR and FE/BE predictor-correc-
tor methods. The overall adaptive solution process is

outlined in Fig. 17.3.

Denoting the time plane by the subscript n and the
variable time step width by  the coupled matrix sys-
tem (17-8) is solved in the following 22 raw working
steps:

(Step 0) Compute the initial acceleration vectors ,
 and  for  (once per problem)

γ Figure 17.3 Adaptive strategy for coupled transient flow,
mass and heat transport.

Rosetten all intermediate constraint conditions

Solving flow equations

Solving contaminant transport equations

Solving heat transport equations

Adapting 3D finite element mesh

Does flow violate constraints?

Time step control for flow errors

Does contaminant transport violate constraints?

Time step control for contaminant transport errors

Time step control for heat transport errors

Does heat transport violate constraints?

T
im

e 
lo

op

Restart

Constraint loop

∆tn

h· n
C· n T· n n 0=
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(17-14)

and guess an initial time step .

(Step 1) Perform explicit predictor solutions by using
the AB and FE algorithm, respectively:

(17-15a)

(17-15b)

The detailed description of the functions and
 can be found in Gresho et al.30, Bixler6, and

Diersch17,18. 

(Step 2) Do corrector solution for the flow equation
achieved by the TR and BE scheme, respectively:

(17-16a)

(17-16b)

(Step 3) If constraint conditions are violated update the
matrix system (17-16a), (17-16b) for the new flow
boundary values and restart the flow solution with step
2. If all constraint limits are satisfied continue with step
4.

(Step 4) Solve Darcy equation:

(17-17)

(Step 5) Update the new accelerations vectors by
’inverting’ the TR and BE, respectively:

(17-18)

(Step 6) Compute the local truncation error of the
approximate flow equation for the AB/TR and FE/BE
scheme, respectively:

(17-19)
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(Step 7) Predict the potential new time step length from
the error estimates of the flow equation:

(17-20)

where  is 3 for the AB/TR and 2 for the FE/BE
scheme,  is a user-specified error tolerance
(  is typical), and  is a norm to be
chosen as the weighted RMS

(17-21)

 or, alternatively, as the maximum norm

(17-22)

in which  is the total number of points and 
corresponds to the maximum value of the hydraulic
head.

(Step 8) Tactics for acceptance of the predicted new
time step: If the flow solution does not satisfy the pre-
scribed accuracy the time step is reduced by using
appropriate formulae17,18 and the flow solution is
restarted with step 2. Otherwise, if the accuracy is sat-
isfied the solution process is continued with step 9.

(Step 9) Perform corrector solution for the mass trans-
port equation achieved by the TR and BE scheme,
respectively:

where  is the partial (tangential) Jacobian
matrix based on the predictor which results from the
embodied full Newton approach. Its specific expres-
sions depend on the divergent and convective form of
the used transport equation as given by Diersch17.

(Step 10) If mass constraint conditions are violated
update the matrix system (17-23) for the new mass
boundary values and restart the mass solution with step

9. Otherwise, continue with step 11.

(Step 11) Update the new acceleration vectors 
for the concentration similar to step 5.

(Step 12) Equivalently to step 6 compute the local trun-
cation error of mass transport  based on

.
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(Step 13) Estimate the potential new time step from the
mass transport computation , similar to step 7 by
using the error .

(Step 14) Accuracy check of mass transport: reject the
current mass transport solution and restart at step 2
with a reduced time width  if the required accuracy

could not be satisfied. Otherwise, continue with the
heat transport solution at step 15.

(Step 15) Perform corrector solution for the heat trans-
port equation accomplished by the TR and BE scheme,
respectively:

(Step 16) If heat constraint conditions are violated
update the matrix system (17-24) for the new heat
boundary values and restart the heat transport solution
with step 15. Otherwise, continue with step 17.

(Step 17) Update the new accelerations vectors 
for the temperature similar to step 5.

(Step 18) Compute the local truncation error of heat
transport  based on .

(Step 19) Estimate the potential new time step from the
heat transport computation , similar to step 7 by
employing the error .

(Step 20) Accuracy check of heat transport: reject the
current heat transport solution and restart with step 2
for a reduced time step if the required accuracy could
not be satisfied. Otherwise, continue with step 21.

(Step 21) Determine the new time step length

(17-25)

and restart the time loop with step 1 as long as the final
time is not reached.

As seen above a constraint violation can lead to
recycling steps around the matrix solution process for
flow, mass and heat transport. The matrix updating
gains efficiency if a total reassembly can be avoided.
Such a procedure of constraint feedback is generally
not restricted in the number of loops. Normally, if con-
straint conditions are raised two recycles become suffi-
cient.

To solve the resulting large sparse matrix systems
((17-14), (17-16a), (17-16b), (17-17), (17-23), (17-24))
appropriate iterative solvers for symmetric and unsym-
metric equations have to be applied3. For the symmet-
ric positive definite flow equations the conjugate
gradient (CG) method33 is successful provided a useful
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preconditioning is applied. Standard preconditioner
such as the incomplete factorization (IF) technique49

and alternatively a modified incomplete factorization
(MIF) technique4 based on the Gustafsson algorithm
are used. Different alternatives are available for the
CG-like solution of the unsymmetric transport equa-
tions: a restarted ORTHOMIN5 (orthogonalization-
minimization) method, a restarted GMRES61 (general-
ized minimal residual) technique and Lanczos-type
methods47,71, such as CGS68 (conjugate gradient
square), BiCGSTAB74 (bi-conjugate gradient stable)
and BiCGSTABP74 (postconditioned bi-conjugate gra-
dient stable). For preconditioning an incomplete Crout
decomposition scheme is currently applied. Com-
monly, BiCGSTABP is the first choice in our practical
simulation of large problems. 

NTKT bñ~ãéäÉë= çÑ= Oa= qÜÉêãçJ
Ü~äáåÉ=póëíÉãë

NTKTKN aáãÉåëáçåäÉëë=é~ê~ãÉíÉêë

From a dimensional analysis of the governing bal-
ance equations one can derive the following dimen-
sionless parameters54 to characterize the convection
processes:

solutal Rayleigh number :

(17-26)

thermal Rayleigh number :

(17-27)

Lewis number :

(17-28)

Buoyancy ratio (Turner number) :

(17-29)

Accordingly, the relation between the solutal and ther-
mal Rayleigh number is given by

(17-30)

From perturbation analysis along the thermohaline
Horton-Rogers-Lapwood (HRL) problem54 the critical
Rayleigh number  is composed of solutal and ther-
mal influences. It can be shown for the HRL problem
that boundary between stable and instable convection
possesses a straight line, viz.,

(17-31)

The critical Rayleigh number  depends on bound-
ary conditions, geometry and anisotropy. A first critical
number  describes the onset of convection in the
form of stable stationary rolls which is normally given
by . Further increase of the Rayleigh number leads
to a second critical stage characterized by . For
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this regime no more stationary conditions exist and
fluctuating (oscillatory) transient convective patterns
appear.  is only known from numerical
studies35,37,58,65, where a value of about 390 is reported.
For 3D cases it has been found the final convective
structures are dependent on the initial conditions. Sta-
ble convection could be recognized only if raised as 2D
roll cells. Otherwise, the 3D state has found to be insta-
ble from the beginning78 as soon above criticality.

NTKTKO qÜÉ= Oa= íÜÉêãçÜ~äáåÉ= bäÇÉê
éêçÄäÉã

NTKTKOKN aÉÑáåáíáçå=çÑ=íÜÉ=éêçÄäÉã

The 2D saline Elder problem43 is expanded to a
thermohaline convection process if the salinity field is
augmented by a thermal distribution as defined in Fig.
17.4. The geometry is given by the aspect ratio

 of 4 and a so-called intrusion ratio 
of 0.5. While the homogeneous aquifer is permanently
heated from below, the salinity gradient acts from
above. The normalized concentration on the top of the
aquifer is greater than zero in the central section. On
the bottom of the aquifer the salinity is held at zero. On
the other hand, the top and bottom boundaries are held
at constant temperatures as indicated in Fig. 17.4. Oth-
erwise, all remaining boundary portions are considered
impervious for solute and adiabatic (insulated) for heat.
All boundaries are impervious for fluid flow. As a ref-
erence for the hydraulic head a single boundary value
of  has to be set at one node (normally in the cen-
tre of the mesh). The used model parameters are sum-
marized in Tab.17.1.

As stated above, such a formulation of the thermo-
haline Elder problem can be considered as a mixed
DDC regime where a finger regime dominates at the
beginning (cool salinity sinks down) and later a more
diffusive regime occurs (downsunk salinity is heated
from below).

Rac2

A L d⁄= I e L⁄=

h 0=

Table 17.1 Simulation parameters for the 2D 
thermohaline Elder problem

Symbol Quantity Value Unit

aspect ratio 4. 1

buoyancy ratio 
(Turner number)

1, 2, 3, 4, 5 1

reference concen-
tration

0. g l-1

thermal capacity of 
fluid

4.2 . 106 J m-3 K-1

Figure 17.4 Definition of the 2D thermohaline Elder prob-
lem (modified from Voss and Souza75).
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molecular diffusion 
coefficient

3.565 . 10-6 m2 s-1

thickness (height) 150 m

extent of intrusion 300 m

viscosity relation 
function

1 1

symmetric intru-
sion ratio

0.5 1

hydraulic conduc-
tivity

4.753 . 10-6 m s-1

length 600 m

Lewis number 1 1

solutal Rayleigh 
number

400 1

thermal Rayleigh 
number

400, 200, 
133.3, 100, 

80

1

reference tempera-
ture

0. K

temperature differ-
ence

400, 200, 
133.3, 100, 

80

K

longitudinal ther-
modispersivity

0. m

transverse thermo-
dispersivity

0. m

density ratio 0.2 1

Table 17.1 Simulation parameters for the 2D 
thermohaline Elder problem (continued)

Symbol Quantity Value Unit

Dd

d

e

fµ

I

K

L

Le

Ras

Rat

T0

∆T

αL

αT

α Cs⁄

longitudinal disper-
sivity of solute

0. m

transverse disper-
sivity of solute

0. m

thermal expansion 
coefficient

5 . 10-4 K-1

porosity 0.1 1

thermal diffusivity 3.565 . 10-7 m2 s-1

thermal conductiv-
ity of fluid

0.65 J m-1 s-1 K-1

thermal conductiv-
ity of solid

1.591 J m-1 s-1 K-1

Table 17.1 Simulation parameters for the 2D 
thermohaline Elder problem (continued)

Symbol Quantity Value Unit

βL

βT

β

ε

Λ

λf

λs
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The finite element meshes as shown in Fig. 17.5
which have proven to be capable of attaining conver-
gent solutions for the Elder problem43 are also used for
following investigations.

NTKTKOKO oÉëìäíë=~åÇ=ÇáëÅìëëáçå

The basis for comparison is the thermohaline simu-
lation for the pure saline free convection, i.e. 
and B = , as presented in the first part of this paper43.
It meets the best numerical approximation available for
this case: divergent formulation of the mass transport
equation, extended Boussinesq approximation, Galer-
kin-FEM, and predictor-corrector AB/TR time integra-
tor. As the convergence tolerance  a value of  is
used both for head , salinity  and temperature 
based on a RMS error norm (cf. eqn (17-21)).

To study the growing influence of thermohaline
convection more in detail we consider the computa-
tional results using mesh A for decreasing buoyancy

ratios B = , 5, 4, 3, 2 as exhibited in a series of Fig.
17.6. While the results for B = 5 (Fig. 17.6b) are still
rather similar to the pure (asymptotic) saline convec-
tion at B =  (Fig. 17.6a), beginning with B = 4 the
influence of the superimposing thermal convection on
the salinity distribution becomes apparent (Figs. 17.6c-
e). There are no more monotonic changes in the salinity
pattern. Surprisingly, salinity distributions reveal asym-
metric characteristics at longer times when the influ-
ence of thermal convection becomes stronger as seen at
B = 2 in Fig. 17.6e.

To check the influence of spatial resolution the
computations are repeated with the refined mesh B.
The long-term salinity pattern for small buoyancy
ratios are illustrated in Fig. 17.7. Now, symmetric
salinity distributions appear for B = 4 (Fig. 17.7a) and
B = 2 (Fig. 17.7b). A comparison with the coarser mesh
counterparts of Fig. 17.6 reveals further qualitative
changes in the pattern evolution. The case with an equi-
librium of solutal and thermal buoyancy effects for B =
1 (Fig. 17.7c) gives again asymmetric distributions of
salinity. Note, the effective Rayleigh number is here

mesh A mesh B

Figure 17.5 Finite element meshes used: mesh A consisting of 4400 element and 4539 nodes, refined mesh B
with 9900 elements and 10108 nodes.

Rat 0=
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already 800 ( ) where transient distur-
bances should take influence. However, there is appar-
ently no physical reason for a broken symmetry and
mesh effects are likely responsible for such an asym-
metric evolution. It is obvious, at sufficiently high Ray-
leigh numbers each initially small disturbance which is
not perfectly symmetric can evoke asymmetry which
grows over a longer period. Moreover, in the numerical
solution process such disturbances can be caused, e.g.,
by inappropriate spatial discretizations, remaining
errors in solving the matrix systems by iterative tech-
niques or roundoff errors arising in computing the
physically instable process. On the other hand, in a
physical experiment or in real sites the trigger of asym-
metry may be an initially disturbed distribution or due
to nonhomogeneous materials.

It seems that the numerical solutions reflect the
physical instabilities which is most apparent for the
thermohaline system if the solutal and thermal effects
are nearly equilibrated (B = 1). It becomes obvious that
modeling of such unstable thermohaline systems will
be very expensive, especially in 3D.

Finally, Fig. 17.8 presents both the simulated tem-
perature and salinity distributions for the case of B = 4.
It demonstrates how the salinity evolution in a thermo-
haline convection process is related to specific pattern
formations of the temperature field.

Ra Ras Rat+=

Figure 17.6 Influence of thermohaline convection: com-
puted salinity distributions of 0.2 and 0.6 normalized
isochlors at 1, 2, 4, 10, 15, and 20 years (from left to
right) for different buoyancy ratios (a) B = , (b) B = 5,
(c) B = 4, (d) B = 3, and (e) B = 2 by using mesh A.

∞

a)

c)

d)
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b)
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a)

b)

c)

Figure 17.7 Mesh effects: computed salinity distributions
of 0.2 and 0.6 normalized isochlors at 10, 15, and 20 years
(from left to right) for different buoyancy ratios (a) B = 4,
(b) B = 2, and (c) B = 1 by using mesh B.

Figure 17.8 Computed distributions of salinity and temper-
ature at several times for B = 4 using mesh A.

salinity temperature     t 
[years]
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NTKTKP qÜÉ=Oa=íÜÉêãçÜ~äáåÉ=ë~äí=ÇçãÉ
éêçÄäÉã

NTKTKPKN aÉÑáåáíáçå=çÑ=íÜÉ=éêçÄäÉã

The considered test case is an idealization of the
flow over a salt dome32,43,44,55, where the geometry is
greatly simplified. The geometry and boundary condi-
tions used are shown in Fig. 17.9. The cross section of
the model extends horizontally 900 m and vertically
300 m having an aspect ratio  of 3. The aquifer is
considered to be homogeneous and isotropic. The
hydraulic head varies linearly on the top of the aquifer.
All remaining boundaries are impervious to flow. The
salinity on the top is taken equal to zero (freshwater)
over the entire boundary. Additionally, a minimum
mass flux constraint condition of  is imposed.
It controls that the freshwater condition is only valid if
the flow enters the domain. The middle section of the
aquifer base represents the cap of the salt dome having
a relative salt concentration equal to unity. The thermo-
haline extension of the salt dome problem concerns a
superimposition of a thermal gradient acting upward
and it tends to destabilize the brine pool due to the aris-
ing buoyant forces. Accordingly, the bottom of the
aquifer is assigned by a constant normalized tempera-
ture of , while the top boundary is imposed by a
normalized temperature of zero ( ). Again, the
upper boundary is additionally constrained by a mini-
mum heat flux of zero  which permits a con-
trol of the boundary conditions for inflowing and
outflowing situations. The side walls of the domain are
regarded as impervious for solute mass and adiabatic
(insulated) for heat. The model parameters are summa-
rized in Tab. 17.2. According to the DDC classification

as stated above, the formulation of the thermohaline
salt dome problem is one of a diffusive regime where
the buoyancy force is caused by heat, which has a
larger diffusivity than salt.

A

QC
min1 0≡

T 1=
T 0=

QT
min1 0≡

Table 17.2 Simulation parameters for the 2D 
thermohaline salt dome problem

Symbol Quantity Value Unit

aspect ratio 3 1

buoyancy ratio 
(Turner number)

2, 3, 5 1

reference concen-
tration

0. g l-1

thermal capacity of 
fluid

4.2 . 106 J m-3 K-1

thermal capacity of 
solid

2.52 . 106 J m-3 K-1

Figure 17.9 Definition of the 2D thermohaline salt dome
problem (modified from Herbert et al.32).

Salt Dome

inflow: C = 0
x3∂

∂C 0=outflow:

C = 1, T = 1T = 1 T = 1

h = hb

x3∂
∂C q3 0= =

x3∂
∂C q3 0= =

T = C = 0

h = ha

L = 900 m

d 
= 

30
0 

m

x3

x1

constrained by QC
min1 = QT

min1 = 0
a b

e = 300 m

x 1
∂∂C

x 1
∂∂T

q 1
0

=
=

=

x 1
∂∂C

x 1
∂∂T

q 1
0

=
=

=

A

B

C0

cfρf
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The finite element mesh as shown in Fig. 17.10 is used
for the simulations of the thermohaline salt dome prob-
lem. The predictor-corrector AB/TR time integrator
with a RMS-based convergence tolerance   of  is
applied.

molecular diffusion 
coefficient

1.39 . 10-8 m2 s-1

thickness (height) 300 m

extent of intrusion 300 m

viscosity relation 
function

1 1

hydraulic head at 
point a

10.228 m

hydraulic head at 
point b

0. m

hydraulic conduc-
tivity

1.0985252 . 
10-5

m s-1

Lewis number 217 1

solutal Rayleigh 
number

2.4 . 105 1

thermal Rayleigh 
number

547, 365, 219 1

reference tempera-
ture

1. K

longitudinal ther-
modispersivity

20. m

transverse thermo-
dispersivity

2. m

density ratio 0.2036108 1

longitudinal disper-
sivity of solute

20. m

transverse disper-
sivity of solute

2. m

Table 17.2 Simulation parameters for the 2D 
thermohaline salt dome problem (continued)

Symbol Quantity Value Unit

Dd

d

e

fµ

ha

hb

K

Le

Ras

Rat

T0

αL

αT

α Cs⁄

βL

βT

thermal expansion 
coefficient

5 . 10-4 K-1

porosity 0.2 1

thermal diffusivity 6.024 . 10-7 m2 s-1

thermal conductiv-
ity of fluid

0.65 J m-1 s-1 K-1

thermal conductiv-
ity of solid

3. J m-1 s-1 K-1

Table 17.2 Simulation parameters for the 2D 
thermohaline salt dome problem (continued)

Symbol Quantity Value Unit

β

ε

Λ

λf

λs

γ 10 3–

Figure 17.10 Finite element mesh used for 2D thermoha-
line salt dome problem consisting of 1920 elements and
2013 nodes.
cbcilt=ö=PPR
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Simulated results of the salt dome problem at a time
of 100 years for different buoyancy ratios B are shown
in Fig. 17.11. It reveals the temperature effect on the
saltwater distribution remains negligible or small if

compared with the single-diffusive results43 at higher
buoyancy ratios B. As seen for B = 2, however, if the
buoyancy ratio becomes smaller vigorous temperature
influences on the brine pattern result in form of a
’wavy’ salinity field caused by the thermal buoyancy.

salinity temperature    B  

5

3

2

a)

b)

c)

Figure 17.11 Evolution of the thermohaline convection system: computed salinity and temperature distributions at 100
years for different buoyancy ratios (a) B = 5, (b) B = 3, and (c) B = 2.
PPS=ö=tÜáíÉ=m~éÉêë=J=sçäK=f
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To illustrate how such a thermal effect on the brine
flow is evolved a series of salinity and temperature pat-
terns are outlined in Fig. 17.12 for the case of B = 2.
The ’wavy’ salinity characteristics is triggered in front
of the salt wedge by thermally driven eddies. As
expected, it leads to an increased saltwater effluent on
top of the aquifer. Note, a buoyancy ratio of 2 implies
an already large temperature difference for a high-con-
centration brine and, accordingly, corresponds to an

extreme situation. It should be mentioned that for the
real site behind the present salt dome problem such
high temperatures corresponding to B = 2 may be
unlikely to occur in practice. However, the variants can
be valuable as test cases to study the effects of higher
temperatures, which may, for instance, arise in the
vicinity of a disposal facility for heat-emitting waste.

salinity temperature     t 
[years]

10

20

50

100

Figure 17.12 Evolution of the thermohaline convection system: computed salin-
ity and temperature distributions at several times for a buoyancy ratio of B = 2.
cbcilt=ö=PPT
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NTKU bñ~ãéäÉë= çÑ= Pa= `Éääìä~ê
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NTKUKN qÜÉ= Pa= bäÇÉê= éêçÄäÉã= Ñçê= ëáåJ
ÖäÉJÇáÑÑìëáîÉ=Eëçäìí~äF=~åÇ=ÇçìÄäÉJÇáÑÑìJ
ëáîÉ=EíÜÉêãçÜ~äáåÉF=ÅçåîÉÅíáçå

NTKUKNKN aÉÑáåáíáçå=çÑ=íÜÉ=éêçÄäÉã

Originally, the Elder problem23 refers to a 2D cross-
sectional convection process in a fluid-saturated porous
layer. As a result, only 2D roll cells can appear. Now,
the interest is focussed on adequate 3D situations. For
this purpose the Elder problem is expanded for both the
single-diffusive and double-diffusive applications in a
porous box consisting of a square base  and a
height d. This box has the same cross sections along the
Cartesian axes as defined in Fig. 17.4 for the 2D
sketch. Boundary conditions and measures are identical
to the 2D case shown in Fig. 17.4. Now, salinity is held
constant in an areal extent on top and bottom of the
porous box. The used parameters correspond to those
given in Tab. 17.1.

The box is discretized by hexahedral trilinear finite
elements as displayed in Fig. 17.13. To reduce the com-
putation effort only a quarter of the discretized domain
is actually simulated. It is based on the assumption that
symmetric planes occur for the studied range of Ray-
leigh numbers. Both AB/TR and FE/BR time marching
with a RMS-based convergence tolerance   of 
have been tested. For the long-term simulations and the

chosen spatial resolution the second-order AB/TR
scheme with a full Newton method becomes sensitive
and produces oscillations at later simulation times. On
the other hand, the first-order FE/BE scheme with full
Newton method has proven to be more stable and
robust and, therefore, it is preferred for present 3D sim-
ulations. Generally, Galerkin-FEM (i.e. no upwinding)
is used. To simulate the convection process over a
period of 100 years the FE/BE scheme takes 641 time
steps for the single-diffusive problem and 965 time
steps for the double-diffusive (thermohaline) problem
(excluding restarted steps).

NTKUKNKO oÉëìäíë=~åÇ=ÇáëÅìëëáçå

The 3D free convection process is similar to the 2D
counterpart, with some interesting new features. To
give more insight into the physics of the 3D convection

L L×( )

γ 10 3–

simulated mesh quarter

Figure 17.13 Total finite element mesh for the 3D Elder
problem: only a quarter of the mesh is actually used in the
computation. This quarter consists of 48,000 hexahedral
elements and 51,701 nodes.
PPU=ö=tÜáíÉ=m~éÉêë=J=sçäK=f



NTKU=bñ~ãéäÉë=çÑ=Pa=`Éääìä~ê=`çåîÉÅíáçå
process Fig. 17.14 shows the evolution of salinity from
different views. The 3D cut-away images (left column
of Fig. 17.14) display the progressing fingering charac-
teristics in the 3D space. Similar to the 2D case we find
also an upwelling salinity pattern in the centre of the
box at the given time stages. The 3D influence
becomes also apparent in the two horizontal views at
an upper elevation of  (135 m) and the middle
horizon of  (75 m) as shown in Fig. 17.14. At the
beginning the quadratic geometry of the intrusion area
on top is visible in the convection pattern. Fingers
appear around the border of the intrusion area and
’blobs’ grow down at the four corners. The quadratic
pattern evolves into more complicated multicellular
formations via a number of characteristic stages. More
’blobs’ appear up to the time when the salinity reaches
the bottom. Then, the structures begin to fuse and the
pattern is completely reformed. After this phase a con-
vection pattern remains which has a characteristic diag-
onal ’star’ form. This ’star’ is a result of the geometry
of the square intrusion area. It becomes clear that the
final formations have a strong dependency on the geo-
metric relations.

An illustration of the pattern evolution in 3D space
is given in Fig. 17.15 where isosurfaces of the 50%
salinity are shown at characteristic time stages. Up to a
time of about 4 years the salinity primarily sinks down
and forms a dissected finger formation. At later time
the upper part contracts and forms the typical diagonal
’star’, while larger ’blobs’ are getting fused below.

0.9 d⋅
0.5 d⋅
cbcilt=ö=PPV
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Figure 17.14 Computed salinity patterns of the 3D Elder problem at times of
(a) 1, (b) 2, (c) 4, (d) 10, and (e) 20 years.

a)

b)

c)

d)

e)

cut-away 3D view upper horizon at 0.9 d middle horizon at 0.5 d
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The 3D thermohaline Elder problem has been simu-
lated for a buoyancy ratio of B = 5, where the solutal
Rayleigh number  is again 400. The 3D distribu-
tions of the computed salinities and temperatures up to
20 years are displayed in Fig. 17.16. In contrast to the
single-diffusive formation (cf. Fig. 17.14) the salinity
pattern appears more diffusive at later times when the
temperature field affects the convection system. Then,
the thermally buoyant forces accelerate the contraction
process of the sinking salinity plume in the centre. At
the final stage, while the single-diffusive convection

provides still an upwelling flow in the centre, the ther-
mohaline convection process reveals a single down-
welling characteristics for the salinity (see Figs. 17.15
and 17.17). As seen, the most heated water is buoyantly
affected outside and around the denser salinity core,
where the isotherms come to the upper locations. These
mutual influences between salinity and temperature are
more apparent in Figs. 17.17 and 17.18 for the com-
puted isosurfaces of salinity and temperature, respec-
tively.

a) b) c)

d) e) f)

Figure 17.15 Computed 3D isosurfaces of 50% salinity for the 3D Elder problem (viewing into the box from bottom to
top) at times of (a) 1, (b) 2, (c) 4, (d) 10, (e) 15, and (f) 20 years.

Ras
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Figure 17.16 Cut-away views of simulated salinity (left) and temperature
(right) distributions for the 3D thermohaline Elder problem at buoyancy
ratio of B = 5 and times of (a) 2, (b) 4, (c) 10, and (d) 20 years.

salinity temperature

a)

b)

c)

d)
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a) b) c)

d) e) f)

Figure 17.17 Computed 3D isosurfaces of 50% salinity for the 3D thermohaline Elder problem (viewing from bottom to
top) at B = 5 and times of (a) 1, (b) 2, (c) 4, (d) 10, (e) 15, and (f) 20 years.
cbcilt=ö=PQP
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NTKUKOKN aÉÑáåáíáçå=çÑ=íÜÉ=éêçÄäÉã

Three-dimensional convective pattern formations in
domains representing a thin porous layer, i.e., for large
aspect ratios A, can be considered as a porous medium

equivalent of Bénard convection. As Elder23 studied
such a problem in 2D referred to as the ’long-heater
problem’ for a Rayleigh number of 200, an aspect ratio
A of 10, and an intrusion ratio  of 0.8. We extend this
’long-heater problem’ to 3D similar to the above Elder
problem. The remaining simulation parameters corre-
spond to that of the original Elder problem described in
the first part of this paper43. Due to the multicellular

a) b) c)

d) e) f)

Figure 17.18 Computed 3D isosurfaces of 50% temperature for the 3D thermohaline Elder problem (viewing from top to
bottom) at B = 5 and times of (a) 1, (b) 2, (c) 4, (d) 10, (e) 15, and (f) 20 years.

I
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convection process in the porous layer a more refined
spatial discretization is needed compared with the 3D
Elder problem above. Moreover, no assumptions of
symmetry are made and, accordingly, the domain has to
be fully discretized. The finite element mesh for the
problem consists of 220,000 (100 x 100 x 22) hexahe-
dral trilinear elements containing 234,623 (101 x 101 x
23) nodes. Again, for the temporal discretization the
FE/BE predictor-corrector scheme with the full New-
ton method and a RMS-based convergence tolerance 
of   is applied to the simulation. 

NTKUKOKO oÉëìäíë=~åÇ=ÇáëÅìëëáçå

The striking features of 3D Bénard convection
development are shown in Fig. 17.19. The initial
motion is characterized by a rectangular string of end-
cells, where at the four corner points the most intensive
growths of ’blobs’ can be observed. It is followed by a
growth of cells starting from the ends of the intrusion
area on top. At these times a remarkable feature of the
3D convection process is the annular roll pattern for-
mation. At smaller times the cell structures are rather
complex (Fig. 17.19b) showing the birth of subcellular
eddies both across and along the annular structure. Due
to the smaller Rayleigh number the nonroll-like pertur-
bations are smoothed at larger times and the convection
process results in a highly regular pattern of ring struc-
tures. 

NTKV `äçëìêÉ

The finite-element method is applied to simulate
variable density flow processes in 2D and 3D ground-

water systems. The described solution strategies as
implemented in the simulator FEFLOW are more gen-
eral and are primarily developed to tackle complex
practical applications where solutal and/or thermal
density effects play an important role. However, before
more complex field situations can be studied the cho-
sen methods and codings have to be extensively tested
over a wider spectrum of this important class of nonlin-
ear problems. In this context the aim of the present
paper is mainly the proving and benchmarking of the
simulations along examples where comparable results
are available, or if not, the obtained results are to be
supposed as a comparison basis for further studies. We
have chosen the Elder and salt dome problem
(HYDROCOIN case 5 level 1) as well suited and rep-
resentative examples. They allow us both to participate
in the process of resolving partly contradictory results
given in the literature and to expand (or generalize) the
2D solutions to three dimensions and additional cou-
pling phenomena from a well-documented and
accepted source. The extensions concern thermohaline
and multicellular convection processes in 2D and 3D.
Unfortunately, to date both numerical and experimental
results of 3D and thermohaline convection are rare and
we are mostly dependent on an incremental procedure
in comparing and interpreting the results among one
another. In this context we found similarities and also
interesting new features regarding the pattern forma-
tions of the buoyancy-driven convection processes.

γ
10 3–
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Figure 17.19 Computed salinity patterns for the 3D Bénard convection problem at Rayleigh number of
200 and dimensionless times of (a) 0.013, (b) 0.026, and (c) 0.078.

vertical distributions at fences 50% salinity isosurface horizon at 0.9 d

a)

b)

c)

viewing from bottom to top
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The interaction between solutal and thermal con-
vection is studied by varying the buoyancy ratio B,
which expresses the relationship between buoyancy
forces due to solutal and thermal convection. Differ-
ences between (pure) saline convection and thermoha-
line convection become apparent for buoyancy ratios

. We found asymmetric convection patterns for
buoyancy ratios near to unity. In this situation, the
hydrodynamic system becomes strongly unstable
because the solutal and thermal buoyancy effects are
nearly equilibrated. As a result, very small vertical
velocities trigger the convection process. Grid effects
indicate the physical instability. The numerical solution
of thermohaline convection systems with buoyancy
ratios near to unity requires extremely fine spatial dis-
cretizations.

Three-dimensional convection needs sufficiently
high spatial and temporal resolutions if damping mea-
sures, such as upwinding, are to be avoided. At moder-
ate Rayleigh numbers (400 for the 3D Elder problem
and 200 for the 3D Bénard convection) we used more
than 50,000 nodes for a quarter of the domain and
about 230,000 nodes for the total discretization of a 3D
porous layer subjected to a free convection process. In
comparison with 2D, where it has been found43 about
10,000 nodes are required to accomplish satisfactorily
accurate results for the Elder problem, the chosen 3D
resolution seems to be a minimum for this class of
problems. Time marching is based on a predictor-cor-
rector strategy with an automatic time step control
embedded in a one-step full Newton method. For the
present examples more than 600 intrinsic time steps are
required for simulating a 3D convection process with a
duration of about 20 years for a convergence tolerance

  of .

It becomes clear that a long-term analysis of 3D free
or thermohaline convection takes a large numerical
effort and is normally a time-consuming task. While a
2D simulation is still on the order of hours of CPU
time, a 3D problem can take days of runtime on a
workstation. However, by using a high-speed worksta-
tion available today the 3D Elder problems and the
Bénard convection could be solved in one day and two
days of runtime, respectively. It should be taken into
consideration that the FEFLOW code is general and
not streamlined, for instance, for special cases of free
convection in rectangular domains with homogeneous
parameters. That means the impact and the found
efforts are representative for general problems having
an arbitrary geometry and permitting such parametric
and boundary conditions which are required in actual
site-specific applications19.
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The weak form of the continuity equation (17-1)
gives
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(A1)

Introducing the Darcy equation (17-2) into eqn (17-1)
and taking into account that the buoyancy term leads to

(A2)

by using the fluid density equation of state (17-5), fol-
lowing final weighted residual formulation of the con-
tinuity equation results

where the extended Boussinesq approximation term
(17-7) is incorporated. Equation (A3) represents the
standard weak form of the substitution formulation to
solve the hydraulic head h. 

tÉ~â=Ñçêã=çÑ=íÜÉ=a~êÅó=Éèì~íáçå=ENTJ
OF

Formally, a weak form of the Darcy equation can
easily be derived as

(A4)

to solve the vector of Darcy fluxes  at given h, C and
T.

tÉ~â=Ñçêã=çÑ=íÜÉ=ã~ëë=íê~åëéçêí=Éèì~J
íáçåë=ENTJPF

The weak formulations for the divergent and con-
vective forms of the contaminant mass conservation
equations differ from the fact that for the former the
divergence theorem is applied both to the convective
and the dispersive terms

(A5)

while the conventional convective form applies the
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divergence theorem only to the dispersive (2nd order)
term

(A6)

Finally, it yields the following weak formulations

(A7)

for the divergent form and

(A8)

for the convective form, respectively, to solve the con-
centration C.

tÉ~â=Ñçêã=çÑ=íÜÉ=ÜÉ~í=íê~åëéçêí=Éèì~J
íáçå=ENTJQF

Similar to the above, the weak formulation of the
convective form of the heat transport equation is given
by

(A9)

for solving the temperature T.

cáåáíÉ=ÉäÉãÉåí=Ñçêãìä~íáçåë

Employing the Galerkin version of the FEM
(GFEM), , for the above weak formulations
and replacing the h, , C and T variables by their trial
approximations

(A10)

the matrix coefficients of eqn (17-8) are as follows:

(A11)

(A12)
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(A14)

(A15)

(A16)

(A17)

(A18)

^ééÉåÇáñ=_

däçÄ~ä= ëãççíÜáåÖ= çÑ= ÇáëÅçåíáåìçìë
îÉäçÅáíó=ÑáÉäÇë

A global approximation of the smoothed Darcy
velocities can be written as

(B1)

Assume that we have an unsmoothed (discontinuous)
velocity field , then the smooth function which
provides a best fit in the least squares sense over the
domain  can be obtained from a minimization of the
functional

(B2)

The minimalization procedure

(B3)

or

(B4)

results in a system of linear equations to solve the
smoothed velocities , viz.,

(B5)

where  represents the mass matrix and  is the
RHS involving the unsmoothed relations. They are
formed in the finite element assembling procedure as

(B6)
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and, by inserting the Darcy velocity components, as

(B7)

Note, the least square approximation of global smooth-
ing (B7) is equivalent to the Galerkin weighting proce-
dure (A16) in Appendix A.

A cost-effective alternative appears if the mass
matrix  is lumped by an row-sum or diagonal scal-
ing

(B8)

without need to solve the linear equation system (B5).
Mass lumping can be shown to be equivalent to an
area-weighted averaging for nodal values.

içÅ~ä= ëãççíÜáåÖ= çÑ= ÇáëÅçåíáåìçìë
îÉäçÅáíó=ÑáÉäÇë

Unlike global smoothing, there is an efficient way
to smooth velocity fields by using only individual ele-
ment information. This is termed as local smoothing45

and provides a simple nodal averaging based on the
number of elements joined at a given node (element
patch). Among several approaches suggested

FEFLOW employs following two-step local technique:

(Step 1) The discontinuous velocity in each element 

(B9)

is computed at the Gauss points  (2 x 2 (x 2) for linear
and 3 x 3 (x 3) for quadratic elements) with given
approximations of the hydraulic head , concentration

, and temperature  for element  from previous
solutions.

(Step 2) The values at the Gauss points are assigned to
the nearest corner node . Each nodal contribu-
tion is summed up and, at the end, the nodal values are
averaged by their number of nodal contributions 
from the patch sharing the node 

   (B10)

^mmbkafu=`

^ìñáäá~êó=éêçÄäÉã=Ñçêãìä~íáçå=ìëÉÇ=Ñçê
ÄìÇÖÉí= Ñäìñ= Åçãéìí~íáçå= çÑ= íÜÉ= ÅçåJ
îÉÅíáîÉ=é~êí

The budget analysis aims at the computation of the
normal convective mass (or heat) fluxes
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. Multiplying each term of the continuity

equation (17-1) by concentration C we get the weak
form

(C1)

It is further

(C2)

Employing the divergence theorem on the LHS of
identity (C2) we obtain from (C1) and (C2)

(C3)

It has been found to evaluate the individual terms of
eqn (C3) in different ways. While the velocity  in the
first term of the RHS is expressed by the Darcy law, the
second RHS term uses explicitly the velocity from the
computation. The LHS surface integral describes
already the desired convective mass flux along the
boundary portion , where  is the normal
fluid flux and  is the normal convec-
tive mass flux through the boundary.

Finally, following finite element formulation results
to compute the normal convective mass flux from
given solutions (A10) of hydraulic head , Darcy flux

, concentration , and temperature 

(C4)

All contributions of mass flux are summed up at node
 to obtain the lumped nodal balance mass flux  in

the form

(C5)

which is defined positive inward and will be used for
the boundary constraint control (see Section 17.6).
Similar expressions to (C4) and (C5) can be derived for
heat balance fluxes if  is used as multiplier.
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