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ABSTRACT
This work continues the analysis of variable density flow in
groundwater systems. It focuses on both thermohaline (dou-
ble-diffusive) and 3D buoyancy-driven convection pro-
cesses. The finite-element method is utilized to tackle these
complex nonlinear problems in two and three dimensions.
The preferred numerical approaches are discussed regarding
appropriate basic formulations, balance-consistent discreti-
zation techniques for derivative quantities, extension of the
Boussinesq approximation, proper constraint conditions,
time marching schemes, and computational strategies for
solving large systems. Applications are presented for the
thermohaline Elder and salt dome problem as well as for the
3D extension of the Elder problem with and without thermo-
haline effects and a 3D Bénard convection process. The sim-
ulations are performed by using the package FEFLOW.
Conclusions are drawn with respect to numerical efforts and
the appropriateness for practical needs.

Key words: porous media, variable density flow, finite ele-
ment method, double-diffusive convection, thermohaline
convec-tion, three-dimensional Bénard convection
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Latin symbols

1  aspect ratio.

1 buoyancy ratio (Turner number).

concentration and reference
concentration, respectively.

maximum concentration.

specific heat capacity of fluid and
solid, respectively.

medium molecular diffusion
coefficient of fluid.

tensor of hydrodynamic dispersion.

thickness (height).

extent.

1 components of the gravitational unit
vector.

1 constitutive viscosity relation
function.

gravitational acceleration.

hydraulic head.

1  symmetric intrusion ratio.

isotropic hydraulic conductivity
constant.

tensor of hydraulic conductivity.

tensor of permeability.
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length.

1 Lewis number.

1 basis (shape) function at node m.

1 normal unit vector (positive
outward).

fluid pressure.

sink/source of contaminant mass.

lumped balance flux of solute
(positive inward).

extended Boussinesq approximation
term.

sink/source of heat.

lumped balance flux of heat
(positive inward).

sink/source of fluid.

prescribed normal boundary mass
flux (positive outward).

Darcy flux of fluid.

normal component of the conductive
part of the heat flux (positive
outward).

normal component of the dispersive
part of the mass flux (positive
outward).

normal component of the convective
plus dispersive part of the mass flux
(positive outward).

normal component of the Darcy
fluid flux (positive outward).

1 specific retardation factor and its
time derivative, respectively.

1 solutal and thermal Rayleigh
number, respectively.

1 critical Rayleigh number.

specific storage coefficient
(compressibility).

temperature and reference
temperature, respectively.

 absolute specific Darcy fluid
flux.

spatial weighting function and
weighting function at node m,
respectively.

Cartesian coordinates, Eulerian
spatial coordinate vector.

Greek symbols

1 fluid density difference ratio.

longitudinal and transverse
thermodispersivity, respectively.

fluid expansion coefficient.

coefficients of longitudinal and
transverse dispersivity of solute,
respectively.

boundary.

1 error tolerance measure.

concentration difference.

temperature difference.

time step width at time plane n.

1 porosity.

chemical decay rate.

thermal diffusivity.

tensor of hydrodynamic
thermodispersion.

tensor of thermal conductivity.

tensor of mechanical
thermodispersion.

thermal conductivity for fluid and
solid, respectively.

dynamic fluid viscosity and

L L

Le

Nm

ni

p
f

ML
1–
T

2–

QC ML
3–
T

1–

QC
R

MT
1–

QEB T
1–

QT ML
1–
T

3–

QT
R

ML
2
T

3–

Q T
1–

qC
R

ML
2–
T

1–

qi
f

LT
1–

qnT

cond
MT

3–

qnC

disp
ML

2–
T

1–

qnC

total
ML

2–
T

1–

qnh
LT

1–

R Rd

Ras Rat

Rac

So L
1–

T To 

Vq
f

LT
1–

qi
f
qi

f

w wm

xi L


L T L

  1–

L T L



C ML

3–

T 
tn T


 T

1–

 L
2
T

1–

i j MLT
3–  1–

i j
cond

MLT
3–  1–

i j
disp

MLT
3–  1–

f s MLT
3–  1–

f o
f ML

1–
T

2–
O=ö=cbcilt



NKN=fåíêçÇìÅíáçå
reference viscosity, respectively.

fluid density and reference density,
respectively.

solid density.

1  normalized
temperature, T in .

linear (Henry) or nonlinear
(Freundlich, Langmuir) sorptivity
function.

1  mass fraction.

domain.

Subscripts

spatial Eulerian coordinate
(Einstein’s summation convention).

direction of gravity in the Cartesian
coordinate system.

nodal points (Einstein’s summation
convention).

time plane or normal direction.

reference value.

Gauss point.

Superscripts

finite element.

fluid phase.

predictor value.

prescribed boundary value.

solid phase.
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Thermohaline (or double-diffusive) convection pro-
cesses are connected with the presence of heteroge-
neous temperature and concentration fields. Thus,
convective currents can arise from heat and salinity
gradients acting simultaneously (e.g., Nield53, Rubin59,
Rubin and Roth60, Tyvand73, Trevisan and Bejan72,
Murray and Chen52, Shen67, Angirasa and Srinivasan2,
Nield and Bejan54, Brandt and Fernando7). Geophysical
applications of thermohaline models can be found for
instance in the field of geothermics and waste disposal
in salt formations (Evans and Nunn24). Thermohaline
effects are important for the production of mineralized
thermal water, the reinjection of cooled brine into
heated deep aquifers connected with geothermal supply
technologies, and groundwater movement near salt
domes.

Usually, the phenomena of double-diffusive con-
vection (DDC) are related to the presence of both (1) at
least, two properties (substances, thermal energy) strat-
ifying the fluid and having different diffusivities and
(2) opposing effects on the vertical density gradient7.
Accordingly, different regimes can be distinguished: A
diffusive regime occurs if the destabilizing potential
comes from the property with the larger diffusivity,
e.g., a stable salinity gradient is heated from below. On
the other hand, a finger regime exists if the driving
(destabilizing) forces are caused by the more slowly
diffusing property, e.g. hot saline fluid on top of a sta-
ble temperature gradient. Both regimes can also appear
in a differentiated form referred here to as a mixed
DDC regime if both properties can destabilize and
affect the fluid during the temporal development, e.g., a
heavy cool solute sinks down to a region which is
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heated from below, so a finger regime at the beginning
converges more to a diffusive regime over time.

The first part of the paper by Kolditz et al.43 mainly
focused on the verification of numerical schemes
against available benchmarks for density-coupled con-
vection processes. Established test examples (e.g., the
Henry problem, Elder problem, and salt dome prob-
lem) are only 2D and single-diffusive (either mass or
heat-driven) convection processes. But even for these
academic, seemingly simplistic 2D problems a number
of discrepancies appear, still for most recent findings55.
It has been shown43 that numerical schemes with their
spatial and temporal resolutions can essentially influ-
ence computational results. Figure 1.1 recalls the con-
tradictory results for the Elder problem as well as the
salt dome test case obtained by different authors. While
Elder23 and the recomputation done by Voss and
Souza75 used obviously overdiffusive schemes on rela-
tively coarse grids, newer findings43,55 with refined
spatial and temporal discretizations reveal convection
pattern which are distinctly different from former
work. The flow field indicates now a central upwelling
rather than downwelling. More dramatically, Olden-
burg and Pruess55 recently presented new results for the
salt dome problem (HYDROCOIN level 1 case 5).
They believed to achieve much more accurate solutions
for this example. But, their results are fully outside of
all results known to date (Fig. 1.1b). All the more, their
’swept forward-type’ solutions are suspiciously very
near to the pure freshwater case without any density
coupling, so TOUGH2’s results become widely ques-
tionable for problems involving velocity-dependent
dispersion effects. A possible reason for this discrep-
ancy is recently indicated by the work of Konikow et
al.44. They showed that a salinity pattern of a swept for-

ward type appears if constrained boundary conditions
for the salt dome interface are applied (allowing only
dispersive release of brine and precluding any convec-
tive release of brine). While the study by Konikow et
al.44 is more physically motivated it also gives an indi-
cation of the importance of a mathematically (numeri-
cally) correct handling of boundary conditions for this
type of problems, independently of their physical
appropriateness or not.

In the past, Galerkin methods, finite differences
(FDM) and finite element methods (FEM) have been
employed to solve the nonlinear coupled balance equa-
tions for variable density groundwater problems in 2D.
Pinder and Cooper57 used the method of characteristics.
Finite elements based on a primitive u-v-p-variable for-
mulation are utilized by Segol et al.66, Huyakorn and
Taylor38 and Diersch12,14,15. However, the subsequent
works desisted from primitive variable approaches
because their increased accuracy was shown to be in
disproportion to the increased numerical effort and
inherent restrictions in formulating boundary condi-
tions. Accordingly, standard formulations succeeded
which are based on substituting the Darcy law in the
primary balance equations. Recent works devoted to
this subject are presented, among others, by Frind26,
Diersch et al.16, Voss and Souza75, Diersch17, Hassani-
zadeh and Leijnse31, Herbert et al.32, Galeati et al.26,
Schincariol et al.63, Fan and Kahawita25, Oldenburg
and Pruess55, Croucher and O’Sullivan12, Zhang and
Schwartz79, and Kolditz42. On the other hand, three-
dimensional applications are related to field problems
as given by Huyakorn et al.39, Kakinuma et al.40 and
Xue et al.76 and do not consider rigorously the density
coupling mechanisms. However, there are prior theo-
retical and numerical works in three-dimensional free
Q=ö=cbcilt
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convection problems mostly focused on the (cavity)
Horton-Rogers-Lapwood (HRL) problem54 presented
by Holst and Aziz34, Zebib and Kassoy78, Straus and
Schubert69,70, Horne36, Schubert and Straus64, Caltagi-

rone et al.9, Chan and Banerjee9, and Beukema and
Bruin6.

It is obvious from the above that the extension to
thermohaline and/or 3D density-coupled convection
problems will significantly increase the importance of
both getting a physically equivalent process description
in the discretized models and overcoming the numeri-
cal burden, particularly if aiming at practical problems.

In the following, relevant numerical aspects are dis-
cussed in the context of the FEM. The developed solu-
tion strategies are implemented in the 3D finite-
element simulator FEFLOW20. FEFLOW is employed
to study 2D and 3D, thermohaline and buoyancy-
driven convection problems from various perspectives.

Figure 1.1 a) Simulated concentration pattern at 20 years for the Elder problem with a Rayleigh number of 400:
(left) results obtained by the SUTRA simulator (Voss and Souza75), (solid curves) and by Elder23 (dashed curves),
and (right) computed by the FEFLOW simulator in agreement with the results attained by ROCKFLOW and
TOUGH2 as discussed by Kolditz et al.43, and b) salt dome test case: (left) TOUGH2 results55 against (right)
FEFLOW (and ROCKFLOW) findings43 for steady-state with results55 against (right) FEFLOW (and ROCK-
FLOW) findings43 for steady-state with mechanical dispersion of  = 20 m and  = 2 m.L T

a)

b)
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First, we expand the 2D Elder and salt dome problems
to thermohaline processes in order to study thermal
influences on groundwater-brine flow systems. Second,
we extend the original Elder problem to 3D for both
single-diffusive (solutal) and double-diffusive (thermo-
haline) convection processes to analyze the evolution
of 3D pattern formations in comparison with the 2D
counterparts. Finally, we devote to a Bénard problem as
an example of more complex 3D multicellular convec-
tion in a porous layer. The presented results for thermo-
haline and solutal convection systems may provide
examples for a comparison analysis in 2D and 3D by
using alternative approaches.

NKO _~ëáÅ=bèì~íáçåë

The governing equations for the coupled mass and
heat transport in groundwater (saturated porous
medium) are derived from the basic conservation prin-
ciples for mass, linear momentum, and energy43. The
following nonlinear system finally results20,22 which
has to be solved in two and three dimensions

(1-1)

(1-2)

(1-3)

(1-4)

To close the set of balance equations the following con-
stitutive formulations are additionally needed:

(1-5)

As seen a hydraulic-head-conductivity-(h-K)-form
of the Darcy equation (1-2), instead of the pressure-
permeability-(p-k)-form, is preferred in FEFLOW
which usually permits more convenient formulations of
boundary conditions and parameter relations for appli-
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cations in subsurface hydrology. As the result, the ten-
sor of hydraulic conductivity  refers to the reference
density  and the reference viscosity , which are,
on the other hand, related to the proper reference condi-
tions for the concentration  and the temperature .
For such a formulation a viscosity relation function ,
in eqn (1-5), appears to include viscosity effects in
Darcy’s law (1-2). The following constitutive polyno-
mial expression is used

(1-6)

which is a combination of empirical relationships given
by Lever and Jackson48 for high-concentration saltwa-
ter and by Mercer and Pinder49 for geothermal pro-
cesses in the range between 0 and 300 . In practice,
the expansion coefficients  and  of eqn (1-5) are in
the most cases considered as constant54. For the present
investigations we shall also use this assumption to
maintain an unified parameter basis for comparison
purposes. However, it should be mentioned in a geo-
thermal context where large temperature variations
occur and buoyancy forces are dominant, this approach
is often not appropriate56. Based on the theoretical
framework done by Perrochet56 FEFLOW is also capa-
ble of handling a nonlinear variable thermal expansion

 in form of a 5th order polynomial to match the
fluid density variation over a wide temperature range

with a high accuracy and to satisfy the zero condition
(density anomaly) at 4 . For more details see
Diersch22.

The divergent form and the convective form of the
contaminant mass transport equation (1-3) (the energy
balance equation (1-4) has already been led to a con-
vective form after introducing the temperature) are
physically equivalent. Commonly, the convective form
of the transport equation is preferred for numerical
approximations because simpler boundary-value prob-
lems are accessible.

It is known28,43 the Boussinesq approximation
becomes insufficient for large density variations (e.g.,
at high-concentration brines or high-temperature gradi-
ents). The main difference between the Boussinesq
approximation and the actual balance quantities is
expressed by the additional term  in the con-
tinuity equation (1-1) according to

(1-7)

which is neglected if the Boussinesq approximation is
assumed. The first term in eqn (1-7) can be omitted if
the temporal changes in concentration and/or tempera-
ture vanish. However, even the evolving features of a
convection process may be thoroughly affected at
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higher density contrasts (problems of bifurcation, phys-
ical instability and hydrodynamic pattern formation).
The second term of eqn (1-7) can be ignored if the den-
sity gradient is essentially orthogonal to the velocity
vector. This is quite often not a tolerable assumption.
Note, the expression (1-7) has to be modified in the
case a nonlinear variable thermal expansion 22.

NKP pé~íá~ä=aáëÅêÉíáò~íáçå

The above equations (1-1) to (1-4) are discretized
by the FEM using bilinear or biquadratic elements for
2D, and prismatic pentahedral trilinear or hexahedral
trilinear and triquadratic elements for 3D. Finally, it
yields the following coupled matrix system:

(1-8)

where h, q, C and T represent the resulting vectors of
nodal hydraulic head, Darcy fluxes, contaminant con-
centration and temperature, respectively. The super-
posed dot means differentiation with respect to time t.
The matrices S, A, O, P and U are symmetric and
sparse, while D and L are unsymmetric and sparse. The
remaining vectors F, B, R and W encompass the right-
hand sides (RHS) of eqns (1-1) to (1-4), respectively.
The main functional dependence is shown in parenthe-
sis.
The individual finite-element formulations of the
matrix system (1-8) as realized in FEFLOW are sum-

marized in Appendix A. Note, different formulations
result for the divergent and the convective forms of the
transport equations. Though physically equivalent,
they can deliver different numerical solutions due to
their different boundary-value formulations.

Another point of view is related to the numerical
evaluation of the Darcy fluxes q for a given discretiza-
tion. The success of a numerical solution for variable
density flow problems is essentially dependent on an
appropriate choice of suitable schemes for computing
derivative quantities from the Darcy equation.

NKQ `çåíáåìçìë= ^ééêçñáã~J
íáçå=çÑ=sÉäçÅáíó=cáÉäÇë

The substitution of Darcy fluxes (1-2) in the conti-
nuity equation (1-1) gives immediately an equation to
determine the unknown hydraulic head h according to
the weak formulation (A3) in Appendix A. If h is
known and assuming initial C and T distributions, the
fluxes q can be directly computed via Darcy’s equation
(1-2). However, a careful handling of derivative quanti-
ties is required. As normally done in FEM, piecewise
continuous ( ) basis functions  (Appendix A) for
the hydraulic head h generate velocity fields q (using
derivatives of hydraulic head) that exhibit discontinui-
ties across element boundaries. It results in nonunique
values at nodal points. Particularly for buoyancy-influ-
enced flows, discontinuous (nonunique) velocities can
cause difficulties (spurious vertical velocities) in the
numerical solution due to inappropriate balance
approximation of the lower order term , behav-
ing constantly in an element for the case of linear basis
functions, and the higher order gravitational term
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Oh· S h C T, , h+ F h q C C· T T·, , , , , =

Aq B h C T, , =
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, varying linearly in an element for
linear basis functions, of the RHS of Darcy equation
(1-2). This has already been addressed in previous
works29,32,75 and different numerical schemes were pro-
posed to overcome these problems.

Voss and Souza75 preferred for the SUTRA code in
2D a reduced order approximation of the buoyancy
term, actually the concentration is averaged in every
element, therefore, the pressure gradient and the con-
centration distribution have the same spatial variability,
practically constant (for linear basis functions). This is
called a consistent velocity evaluation. Leijnse46

showed that such a consistent velocity approximation
can be interpreted as an average of the local gravity
component in the local directions of a finite element. A
generalization of this spatial averaging has been
recently presented by Knabner and Frolkovic41.
Instead of reducing the approximations Herbert et al.32

introduced a mixed interpolation strategy in NAMMU
for 2D, where the pressure is approximated by qua-
dratic elements to obtain a linearly distributed pressure
gradient which becomes consistent with a linear distri-
bution of the concentration-dependent buoyancy term.
Clearly, quadratic basis functions increase the compu-
tational expense and, especially for 3D, an alternative
approach is preferable.

Taking into consideration that the discretized bal-
ance terms of the conservation equations provide gen-
erally a different spatial variability (compare the
’diffusion’ term against the ’convective’ term or a
’reactive’ term), a consistent approximation by the
FEM means that all terms have to be rigorously
weighted at nodal points. As the result, unique values
of even discontinuous variables are generated at nodal

points. This principle is consequently applied also to
the velocity evaluation and leads to approaches
referred to as smoothing techniques used in FEFLOW
for the present analysis. Lee et al.45 thoroughly dis-
cussed both global and local smoothing techniques for
derivative quantities. In this light, the weak form of the
Darcy equation (A4) in Appendix A can be recognized
as a global smoothing procedure which was introduced
in the water resources literature by Yeh77. Today,
smoothing techniques have an additional meaning for
adaptive methods to compute higher order solutions for
an error estimation21. Appendix B summarizes the
smoothing techniques available in FEFLOW and
appropriate for the present simulations of coupled phe-
nomena. While global derivative smoothing schemes
with a consistent mass matrix require a higher numeri-
cal effort, lumped mass smoothing algorithms as well
as simpler local smoothing schemes are the most cost-
effective approaches and have shown to be well-suited
for the present class of problems. The latter is to be rec-
ommended for large 3D problems.

Smoothed velocities of a higher-order approxima-
tion lead to a continuous distribution of all velocity
components in a mesh. As a consequence, continuous
fields also exist along material interfaces, e.g., between
media with different hydraulic conductivities, where an
interfacial nodal point shares these different media and,
naturally, a weighted average of the flux quantities
results. Leijnse46 pointed out that physically unrealistic
results can be obtained for cases where the conductiv-
ity in adjacent elements differ by more than two orders
of magnitude. Indeed, if utilizing such continuous
velocity fields from a mesh having an insufficiently
adapted interface discretization particle tracking proce-
dures can lead to poor results if starting pathlines near

f
C T  o

f
–  o

f
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such an interface location (a particle may effectively be
propagated into media with low hydraulic conductiv-
ity). On the other hand, a discontinuous velocity field
approximation often gives significant problems when a
particle crosses an element. Then, particle can be
’caught’ in the interface due to components which have
opposite directions across an element edge as indicated
by Sauter and Beusen62, who introduced special transi-
tion elements with interpolated (smoothed) velocity
properties to overcome these difficulties. As the sum,
the higher-order approximation of continuous veloci-
ties is the most natural approach in the finite element
method and need not any ad-hoc techniques in adapt-
ing interface conditions, provided, however, the inter-
face is appropriately discretized. The necessity for a
continuous flow field approximation also in the context
of modeling heterogeneous media is thoroughly dis-
cussed in the work about mixed hybrid finite element
techniques presented by Mosé et al.51 followed by
recent discussions given by Cordes and Kinzelbach11

and Ackerer et al..

NKR `çåëíê~áåíë= ~åÇ= oÉä~íÉÇ
_ìÇÖÉí=^å~äóëáë

Constraints of boundary conditions can play an
important role in practical modeling of variable density
transport. Typically in saltwater enroachment prob-
lems, the boundary conditions of freshwater and salt-
water are dependent on the in/outflowing
characteristics essential to a correct mathematical for-
mulation. However, most prior works26,32,38,44,55,66,75 did
not consider such conditions in a rigorous manner. To
identify the problem let us consider, for instance, the
salt dome flow problem as schematized in Fig. 1.2.

Alternating boundary concentrations appear on the
top boundary depending on the dynamic process. As
long as water enters the domain it should have a pre-
scribed concentration of freshwater. However, if the
water leaves the domain (along the same upper bound-
ary) the concentration on this boundary is unknown
and should be computed. Such a description can be eas-
ily realized if the entire boundary section is assigned by
a freshwater boundary condition of 1st kind ( ),
and at the same time, the boundary will be imposed by
a constraint condition in form of a null minimum mass
flux . Such an arrangement guarantees that
the freshwater condition remains valid as long as the
convective mass flux, being concentration-dependent
due to the density variation, points into the domain.

A rigorous handling of such constraints is permitted
by a prescription of complementary conditions for each
boundary type20,22. For instance, the minimum and
maximum constraints of a Dirichlet-type concentration
will lead to additional conditions in the following form
(it reads: the imposed boundary condition  is

Figure 1.2 Application of transport constraints for saltwater
intrusion in flowing groundwater over a salt dome.
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accepted only if the related mass balance flux  (and
the related hydraulic head ) is within given min-max
bounds, if not, these bounds have to be used as new
boundary conditions, where the boundary type has to
be changed from a 1st kind into a flux-type boundary
condition of a point sink/source )

(1-9)

where  is the mass balance flux at the boundary
point to be computed while the  condition is
imposed,  and  denote the prescribed time-
dependent maximum and minimum bounds, respec-
tively, and  represents a singular mass sink/source
to be set at the boundary point (node) instead of the
original 1st kind boundary condition. Similar expres-
sions exist for the other types of boundary conditions.
This procedure allows the control of concentration at
the boundary in dependence on both the balanced flow
conditions through the boundary (e.g., ) and
the location of possible free-surface conditions within
the bounds . The latter is very important for
complex mine flooding processes as studied by Diersch
et al.19.

The computed fluxes  represent lumped
(summed-up) mass balance fluxes at nodal points

(1-10)

Note, the balance quantities are defined positive
inward on . Actually, the specific balance fluxes 
are composed by their convective and dispersive parts
according to

(1-11)

In practice, it has been shown to be inappropriate to
include the total (convective plus dispersive) flux into
the procedure of controlling the constraint conditions
because the direction of dispersive fluxes is ambiguous
(e.g., the dispersive spreading also occurs against the
flow direction). Accordingly, the balance-based evalua-
tion of fluxes is exclusively related to the convective
mass fluxes:

(1-12)

giving unambiguously directional balance quantities.
Similar expressions can be obtained for the balance of
convective heat flux, viz.,
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(1-13)

The computation of the convective part of balance
fluxes at each controlling (nodal) point is performed
via a budget analysis in a postprocessing step. The
basic formulation used for computing the above bal-
ance quantities is derived in Appendix C.

NKS qÉãéçê~ä= aáëÅêÉíáò~íáçå
~åÇ= fíÉê~íáîÉ= pçäìíáçå
mêçÅÉëë

In general, for more complex flow processes it can-
not be predicted which time steps are allowable with
respect to the accuracy requirements. Accordingly, a
predefined time step marching strategy is often inap-
propriate and inefficient. Alternatively, stable fully
implicit and semi-implicit two-step techniques known
as the GLS-(Gresho-Lee-Sani) predictor-corrector time
integrator6,30 with automatically controlled time step-
ping of first order by the Forward Euler/Backward
Euler (FE/BE) and of second order by the Adams-
Bashforth/Trapezoid Rule (AB/TR) have proven to be
powerful and accurate strategies, especially for strong
nonlinearities and complex situations. At each time
step, the convergence tolerance  directly governs the
time-step size. It provides a cost-effective method in
that the step size is increased whenever possible and
decreased only when necessary due to the error esti-
mates. The GLS scheme is thoroughly described
elsewhere6,17,18,30. Here, we will only address modified
features which are important in the context of the mul-
tiple coupling of equations and constraint computation

for the present tasks. Note, a full Newton method is
embedded into the AB/TR and FE/BE predictor-correc-
tor methods. The overall adaptive solution process is
outlined in Fig. 1.3.

Denoting the time plane by the subscript n and the
variable time step width by  the coupled matrix sys-
tem (1-8) is solved in the following 22 raw working
steps:
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Figure 1.3 Adaptive strategy for coupled transient flow,
mass and heat transport.
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(Step 0) Compute the initial acceleration vectors ,
 and  for  (once per problem)

(1-14)

and guess an initial time step .

(Step 1) Perform explicit predictor solutions by using
the AB and FE algorithm, respectively:

(1-15a)

(1-15b)

The detailed description of the functions and
 can be found in Gresho et al.30, Bixler6, and

Diersch17,18. 

(Step 2) Do corrector solution for the flow equation
achieved by the TR and BE scheme, respectively:

(1-16a)

(1-16b)

(Step 3) If constraint conditions are violated update the
matrix system (1-16a), (1-16b) for the new flow bound-
ary values and restart the flow solution with step 2. If
all constraint limits are satisfied continue with step 4.

(Step 4) Solve Darcy equation:

(1-17)

(Step 5) Update the new accelerations vectors by
’inverting’ the TR and BE, respectively:

(1-18)

(Step 6) Compute the local truncation error of the
approximate flow equation for the AB/TR and FE/BE
scheme, respectively:
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(1-19)

(Step 7) Predict the potential new time step length from
the error estimates of the flow equation:

(1-20)

where  is 3 for the AB/TR and 2 for the FE/BE
scheme,  is a user-specified error tolerance
(  is typical), and  is a norm to be
chosen as the weighted RMS

(1-21)

 or, alternatively, as the maximum norm

(1-22)

in which  is the total number of points and 
corresponds to the maximum value of the hydraulic
head.

(Step 8) Tactics for acceptance of the predicted new
time step: If the flow solution does not satisfy the pre-
scribed accuracy the time step is reduced by using
appropriate formulae17,18 and the flow solution is
restarted with step 2. Otherwise, if the accuracy is sat-
isfied the solution process is continued with step 9.

(Step 9) Perform corrector solution for the mass trans-
port equation achieved by the TR and BE scheme,
respectively:

where  is the partial (tangential) Jacobian
matrix based on the predictor which results from the
embodied full Newton approach. Its specific expres-
sions depend on the divergent and convective form of
the used transport equation as given by Diersch17.

(Step 10) If mass constraint conditions are violated
update the matrix system (1-23) for the new mass
boundary values and restart the mass solution with step
9. Otherwise, continue with step 11.

dn 1+
f low hn 1+ hn 1+

p
–

3 1
tn 1–

tn
---------------+ 

 
---------------------------------=

dn 1+
f low 1

2
--- hn 1+ hn 1+

p
– =











tn 1+
f low tn



dn 1+
f low

-----------------
 
 
  1 

=




 10
4–

10
3–

–=  . 

dn 1+
flow 1

NP
-------- 1

hmax
----------- hi n 1+  hi n – 2

i
 

 
  1 2

=

dn 1+
flow max

i
hi n 1+  hi n –

hmax
--------------------------------------------------=

NP hmax

(1-23)

2P Cn 1+
p 

tn
---------------------------- D qn 1+ Cn 1+

p  Jp Cn 1+
p + +

 
 
 

Cn 1+ P Cn 1+
p  2

tn
--------Cn C· n+ 
  Jp Cn 1+

p Cn 1+
p R Cn 1+

p + +=

P Cn 1+
p 

tn
------------------------- D qn 1+ Cn 1+

p  Jp Cn 1+
p + +

 
 
 

Cn 1+

P Cn 1+
p

 
tn

-----------------------Cn Jp Cn 1+
p Cn 1+

p R Cn 1+
p + +=











Jp Cn 1+
p 
NQ=ö=cbcilt



NKS=qÉãéçê~ä=aáëÅêÉíáò~íáçå=~åÇ=fíÉê~íáîÉ=pçäìíáçå=mêçÅÉëë
(Step 11) Update the new acceleration vectors 
for the concentration similar to step 5.

(Step 12) Equivalently to step 6 compute the local trun-
cation error of mass transport  based on

.

(Step 13) Estimate the potential new time step from the
mass transport computation , similar to step 7 by
using the error .

(Step 14) Accuracy check of mass transport: reject the
current mass transport solution and restart at step 2
with a reduced time width  if the required accuracy
could not be satisfied. Otherwise, continue with the
heat transport solution at step 15.

(Step 15) Perform corrector solution for the heat trans-
port equation accomplished by the TR and BE scheme,
respectively:

(Step 16) If heat constraint conditions are violated
update the matrix system (1-24) for the new heat
boundary values and restart the heat transport solution
with step 15. Otherwise, continue with step 17.

(Step 17) Update the new accelerations vectors 
for the temperature similar to step 5.

(Step 18) Compute the local truncation error of heat
transport  based on .

(Step 19) Estimate the potential new time step from the
heat transport computation , similar to step 7 by
employing the error .

(Step 20) Accuracy check of heat transport: reject the
current heat transport solution and restart with step 2

for a reduced time step if the required accuracy could
not be satisfied. Otherwise, continue with step 21.

(Step 21) Determine the new time step length

(1-25)

and restart the time loop with step 1 as long as the final
time is not reached.

As seen above a constraint violation can lead to
recycling steps around the matrix solution process for
flow, mass and heat transport. The matrix updating
gains efficiency if a total reassembly can be avoided.
Such a procedure of constraint feedback is generally
not restricted in the number of loops. Normally, if con-
straint conditions are raised two recycles become suffi-
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cient.

To solve the resulting large sparse matrix systems
((1-14), (1-16a), (1-16b), (1-17), (1-23), (1-24)) appro-
priate iterative solvers for symmetric and unsymmetric
equations have to be applied3. For the symmetric posi-
tive definite flow equations the conjugate gradient
(CG) method33 is successful provided a useful precon-
ditioning is applied. Standard preconditioner such as
the incomplete factorization (IF) technique49 and alter-
natively a modified incomplete factorization (MIF)
technique4 based on the Gustafsson algorithm are used.
Different alternatives are available for the CG-like
solution of the unsymmetric transport equations: a
restarted ORTHOMIN5 (orthogonalization-minimiza-
tion) method, a restarted GMRES61 (generalized mini-
mal residual) technique and Lanczos-type methods47,71,
such as CGS68 (conjugate gradient square),
BiCGSTAB74 (bi-conjugate gradient stable) and
BiCGSTABP74 (postconditioned bi-conjugate gradient
stable). For preconditioning an incomplete Crout
decomposition scheme is currently applied. Com-
monly, BiCGSTABP is the first choice in our practical
simulation of large problems. 

NKT bñ~ãéäÉë= çÑ= Oa= qÜÉêãçJ
Ü~äáåÉ=póëíÉãë

NKTKN aáãÉåëáçåäÉëë=é~ê~ãÉíÉêë

From a dimensional analysis of the governing bal-
ance equations one can derive the following dimen-
sionless parameters54 to characterize the convection
processes:

solutal Rayleigh number :

(1-26)

thermal Rayleigh number :

(1-27)

Lewis number :

(1-28)

Buoyancy ratio (Turner number) :

(1-29)

Accordingly, the relation between the solutal and ther-
mal Rayleigh number is given by

(1-30)

From perturbation analysis along the thermohaline
Horton-Rogers-Lapwood (HRL) problem54 the critical
Rayleigh number  is composed of solutal and ther-
mal influences. It can be shown for the HRL problem
that boundary between stable and instable convection
possesses a straight line, viz.,
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(1-31)

The critical Rayleigh number  depends on bound-
ary conditions, geometry and anisotropy. A first critical
number  describes the onset of convection in the
form of stable stationary rolls which is normally given
by . Further increase of the Rayleigh number leads
to a second critical stage characterized by . For
this regime no more stationary conditions exist and
fluctuating (oscillatory) transient convective patterns
appear.  is only known from numerical
studies35,37,58,65, where a value of about 390 is reported.
For 3D cases it has been found the final convective
structures are dependent on the initial conditions. Sta-
ble convection could be recognized only if raised as 2D
roll cells. Otherwise, the 3D state has found to be insta-
ble from the beginning78 as soon above criticality.

NKTKO qÜÉ= Oa= íÜÉêãçÜ~äáåÉ= bäÇÉê
éêçÄäÉã

NKTKOKN aÉÑáåáíáçå=çÑ=íÜÉ=éêçÄäÉã

The 2D saline Elder problem43 is expanded to a
thermohaline convection process if the salinity field is
augmented by a thermal distribution as defined in Fig.
1.4. The geometry is given by the aspect ratio 
of 4 and a so-called intrusion ratio  of 0.5.
While the homogeneous aquifer is permanently heated
from below, the salinity gradient acts from above. The
normalized concentration on the top of the aquifer is
greater than zero in the central section. On the bottom
of the aquifer the salinity is held at zero. On the other

hand, the top and bottom boundaries are held at con-
stant temperatures as indicated in Fig. 1.4. Otherwise,
all remaining boundary portions are considered imper-
vious for solute and adiabatic (insulated) for heat. All
boundaries are impervious for fluid flow. As a refer-
ence for the hydraulic head a single boundary value of

 has to be set at one node (normally in the centre
of the mesh). The used model parameters are summa-
rized in Tab.1.1.

As stated above, such a formulation of the thermo-
haline Elder problem can be considered as a mixed
DDC regime where a finger regime dominates at the
beginning (cool salinity sinks down) and later a more
diffusive regime occurs (downsunk salinity is heated
from below).
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42

Rac2
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Figure 1.4 Definition of the 2D thermohaline Elder prob-
lem (modified from Voss and Souza75).
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Table 1.1 Simulation parameters for the 2D 
thermohaline Elder problem

Symbol Quantity Value Unit

aspect ratio 4. 1

buoyancy ratio 
(Turner number)

1, 2, 3, 4, 5 1

reference concen-
tration

0. g l-1

thermal capacity of 
fluid

4.2 . 106 J m-3 K-1

molecular diffusion 
coefficient

3.565 . 10-6 m2 s-1

thickness (height) 150 m

extent of intrusion 300 m

viscosity relation 
function

1 1

symmetric intru-
sion ratio

0.5 1

hydraulic conduc-
tivity

4.753 . 10-6 m s-1

length 600 m

Lewis number 1 1

solutal Rayleigh 
number

400 1

thermal Rayleigh 
number

400, 200, 
133.3, 100, 

80

1

reference tempera-
ture

0. K

A

B

C0

c
ff

Dd

d

e

f

I

K

L

Le

Ras

Rat

T0

temperature differ-
ence

400, 200, 
133.3, 100, 

80

K

longitudinal ther-
modispersivity

0. m

transverse thermo-
dispersivity

0. m

density ratio 0.2 1

longitudinal disper-
sivity of solute

0. m

transverse disper-
sivity of solute

0. m

thermal expansion 
coefficient

5 . 10-4 K-1

porosity 0.1 1

thermal diffusivity 3.565 . 10-7 m2 s-1

thermal conductiv-
ity of fluid

0.65 J m-1 s-1 K-1

thermal conductiv-
ity of solid

1.591 J m-1 s-1 K-1

Table 1.1 Simulation parameters for the 2D 
thermohaline Elder problem (continued)

Symbol Quantity Value Unit

T

L

T

 Cs

L

T







f

s
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The finite element meshes as shown in Fig. 1.5
which have proven to be capable of attaining conver-
gent solutions for the Elder problem43 are also used for
following investigations.

NKTKOKO oÉëìäíë=~åÇ=ÇáëÅìëëáçå

The basis for comparison is the thermohaline simu-
lation for the pure saline free convection, i.e. 
and B = , as presented in the first part of this paper43.
It meets the best numerical approximation available for
this case: divergent formulation of the mass transport
equation, extended Boussinesq approximation, Galer-
kin-FEM, and predictor-corrector AB/TR time integra-
tor. As the convergence tolerance  a value of  is
used both for head , salinity  and temperature 
based on a RMS error norm (cf. eqn (1-21)).

To study the growing influence of thermohaline
convection more in detail we consider the computa-
tional results using mesh A for decreasing buoyancy

ratios B = , 5, 4, 3, 2 as exhibited in a series of Fig.
1.6. While the results for B = 5 (Fig. 1.6b) are still
rather similar to the pure (asymptotic) saline convec-
tion at B =  (Fig. 1.6a), beginning with B = 4 the
influence of the superimposing thermal convection on
the salinity distribution becomes apparent (Figs. 1.6c-
e). There are no more monotonic changes in the salinity
pattern. Surprisingly, salinity distributions reveal asym-
metric characteristics at longer times when the influ-
ence of thermal convection becomes stronger as seen at
B = 2 in Fig. 1.6e.

To check the influence of spatial resolution the
computations are repeated with the refined mesh B.
The long-term salinity pattern for small buoyancy
ratios are illustrated in Fig. 1.7. Now, symmetric salin-
ity distributions appear for B = 4 (Fig. 1.7a) and B = 2
(Fig. 1.7b). A comparison with the coarser mesh coun-
terparts of Fig. 1.6 reveals further qualitative changes
in the pattern evolution. The case with an equilibrium
of solutal and thermal buoyancy effects for B = 1 (Fig.
1.7c) gives again asymmetric distributions of salinity.
Note, the effective Rayleigh number is here already

mesh A mesh B

Figure 1.5 Finite element meshes used: mesh A consisting of 4400 element and 4539 nodes, refined mesh B with
9900 elements and 10108 nodes.

Rat 0=

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800 ( ) where transient disturbances
should take influence. However, there is apparently no
physical reason for a broken symmetry and mesh
effects are likely responsible for such an asymmetric
evolution. It is obvious, at sufficiently high Rayleigh
numbers each initially small disturbance which is not
perfectly symmetric can evoke asymmetry which
grows over a longer period. Moreover, in the numerical
solution process such disturbances can be caused, e.g.,
by inappropriate spatial discretizations, remaining
errors in solving the matrix systems by iterative tech-
niques or roundoff errors arising in computing the
physically instable process. On the other hand, in a
physical experiment or in real sites the trigger of asym-
metry may be an initially disturbed distribution or due
to nonhomogeneous materials.

It seems that the numerical solutions reflect the
physical instabilities which is most apparent for the
thermohaline system if the solutal and thermal effects
are nearly equilibrated (B = 1). It becomes obvious that
modeling of such unstable thermohaline systems will
be very expensive, especially in 3D.

Finally, Fig. 1.8 presents both the simulated temper-
ature and salinity distributions for the case of B = 4. It
demonstrates how the salinity evolution in a thermoha-
line convection process is related to specific pattern
formations of the temperature field.

Ra Ras Rat+=

Figure 1.6 Influence of thermohaline convection: com-
puted salinity distributions of 0.2 and 0.6 normalized iso-
chlors at 1, 2, 4, 10, 15, and 20 years (from left to right)
for different buoyancy ratios (a) B = , (b) B = 5, (c) B =
4, (d) B = 3, and (e) B = 2 by using mesh A.



a)
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b)
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a)

b)

c)

Figure 1.7 Mesh effects: computed salinity distributions of
0.2 and 0.6 normalized isochlors at 10, 15, and 20 years
(from left to right) for different buoyancy ratios (a) B = 4,
(b) B = 2, and (c) B = 1 by using mesh B.

Figure 1.8 Computed distributions of salinity and tempera-
ture at several times for B = 4 using mesh A.

salinity temperature     t 
[years]

2

4
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NKTKPKN aÉÑáåáíáçå=çÑ=íÜÉ=éêçÄäÉã

The considered test case is an idealization of the
flow over a salt dome32,43,44,55, where the geometry is
greatly simplified. The geometry and boundary condi-
tions used are shown in Fig. 1.9. The cross section of
the model extends horizontally 900 m and vertically
300 m having an aspect ratio  of 3. The aquifer is
considered to be homogeneous and isotropic. The
hydraulic head varies linearly on the top of the aquifer.
All remaining boundaries are impervious to flow. The
salinity on the top is taken equal to zero (freshwater)
over the entire boundary. Additionally, a minimum
mass flux constraint condition of  is imposed.
It controls that the freshwater condition is only valid if
the flow enters the domain. The middle section of the
aquifer base represents the cap of the salt dome having
a relative salt concentration equal to unity. The thermo-
haline extension of the salt dome problem concerns a
superimposition of a thermal gradient acting upward
and it tends to destabilize the brine pool due to the aris-
ing buoyant forces. Accordingly, the bottom of the
aquifer is assigned by a constant normalized tempera-
ture of , while the top boundary is imposed by a
normalized temperature of zero ( ). Again, the
upper boundary is additionally constrained by a mini-
mum heat flux of zero  which permits a con-
trol of the boundary conditions for inflowing and
outflowing situations. The side walls of the domain are
regarded as impervious for solute mass and adiabatic
(insulated) for heat. The model parameters are summa-
rized in Tab. 1.2. According to the DDC classification

as stated above, the formulation of the thermohaline
salt dome problem is one of a diffusive regime where
the buoyancy force is caused by heat, which has a
larger diffusivity than salt.

A

QC
min1 0

T 1=
T 0=

QT
min1 0

Table 1.2 Simulation parameters for the 2D 
thermohaline salt dome problem

Symbol Quantity Value Unit

aspect ratio 3 1

buoyancy ratio 
(Turner number)

2, 3, 5 1

reference concen-
tration

0. g l-1

thermal capacity of 
fluid

4.2 . 106 J m-3 K-1

thermal capacity of 
solid

2.52 . 106 J m-3 K-1

Figure 1.9 Definition of the 2D thermohaline salt dome
problem (modified from Herbert et al.32).
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The finite element mesh as shown in Fig. 1.10 is used
for the simulations of the thermohaline salt dome prob-
lem. The predictor-corrector AB/TR time integrator
with a RMS-based convergence tolerance   of  is
applied.

molecular diffusion 
coefficient

1.39 . 10-8 m2 s-1

thickness (height) 300 m

extent of intrusion 300 m

viscosity relation 
function

1 1

hydraulic head at 
point a

10.228 m

hydraulic head at 
point b

0. m

hydraulic conduc-
tivity

1.0985252 . 
10-5

m s-1

Lewis number 217 1

solutal Rayleigh 
number

2.4 . 105 1

thermal Rayleigh 
number

547, 365, 219 1

reference tempera-
ture

1. K

longitudinal ther-
modispersivity

20. m

transverse thermo-
dispersivity

2. m

density ratio 0.2036108 1

longitudinal disper-
sivity of solute

20. m

transverse disper-
sivity of solute

2. m

Table 1.2 Simulation parameters for the 2D 
thermohaline salt dome problem (continued)

Symbol Quantity Value Unit

Dd

d

e

f

ha

hb

K

Le

Ras

Rat

T0

L

T

 Cs

L

T

thermal expansion 
coefficient

5 . 10-4 K-1

porosity 0.2 1

thermal diffusivity 6.024 . 10-7 m2 s-1

thermal conductiv-
ity of fluid

0.65 J m-1 s-1 K-1

thermal conductiv-
ity of solid

3. J m-1 s-1 K-1

Table 1.2 Simulation parameters for the 2D 
thermohaline salt dome problem (continued)

Symbol Quantity Value Unit







f

s

 10
3–

Figure 1.10 Finite element mesh used for 2D thermohaline
salt dome problem consisting of 1920 elements and 2013
nodes.
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Simulated results of the salt dome problem at a time
of 100 years for different buoyancy ratios B are shown
in Fig. 1.11. It reveals the temperature effect on the
saltwater distribution remains negligible or small if

compared with the single-diffusive results43 at higher
buoyancy ratios B. As seen for B = 2, however, if the
buoyancy ratio becomes smaller vigorous temperature
influences on the brine pattern result in form of a
’wavy’ salinity field caused by the thermal buoyancy.

salinity temperature    B  

5

3

2

a)

b)

c)

Figure 1.11 Evolution of the thermohaline convection system: computed salinity and temperature distributions at 100 years
for different buoyancy ratios (a) B = 5, (b) B = 3, and (c) B = 2.
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To illustrate how such a thermal effect on the brine
flow is evolved a series of salinity and temperature pat-
terns are outlined in Fig. 1.12 for the case of B = 2. The
’wavy’ salinity characteristics is triggered in front of
the salt wedge by thermally driven eddies. As
expected, it leads to an increased saltwater effluent on
top of the aquifer. Note, a buoyancy ratio of 2 implies
an already large temperature difference for a high-con-
centration brine and, accordingly, corresponds to an

extreme situation. It should be mentioned that for the
real site behind the present salt dome problem such
high temperatures corresponding to B = 2 may be
unlikely to occur in practice. However, the variants can
be valuable as test cases to study the effects of higher
temperatures, which may, for instance, arise in the
vicinity of a disposal facility for heat-emitting waste.

salinity temperature     t 
[years]

10

20

50

100

Figure 1.12 Evolution of the thermohaline convection system: computed salinity
and temperature distributions at several times for a buoyancy ratio of B = 2.
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NKUKNKN aÉÑáåáíáçå=çÑ=íÜÉ=éêçÄäÉã

Originally, the Elder problem23 refers to a 2D cross-
sectional convection process in a fluid-saturated porous
layer. As a result, only 2D roll cells can appear. Now,
the interest is focussed on adequate 3D situations. For
this purpose the Elder problem is expanded for both the
single-diffusive and double-diffusive applications in a
porous box consisting of a square base  and a
height d. This box has the same cross sections along the
Cartesian axes as defined in Fig. 1.4 for the 2D sketch.
Boundary conditions and measures are identical to the
2D case shown in Fig. 1.4. Now, salinity is held con-
stant in an areal extent on top and bottom of the porous
box. The used parameters correspond to those given in
Tab. 1.1.

The box is discretized by hexahedral trilinear finite
elements as displayed in Fig. 1.13. To reduce the com-
putation effort only a quarter of the discretized domain
is actually simulated. It is based on the assumption that
symmetric planes occur for the studied range of Ray-
leigh numbers. Both AB/TR and FE/BR time marching
with a RMS-based convergence tolerance   of 
have been tested. For the long-term simulations and the

chosen spatial resolution the second-order AB/TR
scheme with a full Newton method becomes sensitive
and produces oscillations at later simulation times. On
the other hand, the first-order FE/BE scheme with full
Newton method has proven to be more stable and
robust and, therefore, it is preferred for present 3D sim-
ulations. Generally, Galerkin-FEM (i.e. no upwinding)
is used. To simulate the convection process over a
period of 100 years the FE/BE scheme takes 641 time
steps for the single-diffusive problem and 965 time
steps for the double-diffusive (thermohaline) problem
(excluding restarted steps).

NKUKNKO oÉëìäíë=~åÇ=ÇáëÅìëëáçå

The 3D free convection process is similar to the 2D
counterpart, with some interesting new features. To
give more insight into the physics of the 3D convection

L L 

 10
3–

simulated mesh quarter

Figure 1.13 Total finite element mesh for the 3D Elder
problem: only a quarter of the mesh is actually used in the
computation. This quarter consists of 48,000 hexahedral
elements and 51,701 nodes.
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process Fig. 1.14 shows the evolution of salinity from
different views. The 3D cut-away images (left column
of Fig. 1.14) display the progressing fingering charac-
teristics in the 3D space. Similar to the 2D case we find
also an upwelling salinity pattern in the centre of the
box at the given time stages. The 3D influence
becomes also apparent in the two horizontal views at
an upper elevation of  (135 m) and the middle
horizon of  (75 m) as shown in Fig. 1.14. At the
beginning the quadratic geometry of the intrusion area
on top is visible in the convection pattern. Fingers
appear around the border of the intrusion area and
’blobs’ grow down at the four corners. The quadratic
pattern evolves into more complicated multicellular
formations via a number of characteristic stages. More
’blobs’ appear up to the time when the salinity reaches
the bottom. Then, the structures begin to fuse and the
pattern is completely reformed. After this phase a con-
vection pattern remains which has a characteristic diag-
onal ’star’ form. This ’star’ is a result of the geometry
of the square intrusion area. It becomes clear that the
final formations have a strong dependency on the geo-
metric relations.

An illustration of the pattern evolution in 3D space
is given in Fig. 1.15 where isosurfaces of the 50%
salinity are shown at characteristic time stages. Up to a
time of about 4 years the salinity primarily sinks down
and forms a dissected finger formation. At later time
the upper part contracts and forms the typical diagonal
’star’, while larger ’blobs’ are getting fused below.

0.9 d
0.5 d
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Figure 1.14 Computed salinity patterns of the 3D Elder problem at times of
(a) 1, (b) 2, (c) 4, (d) 10, and (e) 20 years.

a)

b)

c)

d)

e)

cut-away 3D view upper horizon at 0.9 d middle horizon at 0.5 d
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The 3D thermohaline Elder problem has been simu-
lated for a buoyancy ratio of B = 5, where the solutal
Rayleigh number  is again 400. The 3D distribu-
tions of the computed salinities and temperatures up to
20 years are displayed in Fig. 1.16. In contrast to the
single-diffusive formation (cf. Fig. 1.14) the salinity
pattern appears more diffusive at later times when the
temperature field affects the convection system. Then,
the thermally buoyant forces accelerate the contraction
process of the sinking salinity plume in the centre. At
the final stage, while the single-diffusive convection

provides still an upwelling flow in the centre, the ther-
mohaline convection process reveals a single down-
welling characteristics for the salinity (see Figs. 1.15
and 1.17). As seen, the most heated water is buoyantly
affected outside and around the denser salinity core,
where the isotherms come to the upper locations. These
mutual influences between salinity and temperature are
more apparent in Figs. 1.17 and 1.18 for the computed
isosurfaces of salinity and temperature, respectively.

a) b) c)

d) e) f)

Figure 1.15 Computed 3D isosurfaces of 50% salinity for the 3D Elder problem (viewing into the box from bottom to
top) at times of (a) 1, (b) 2, (c) 4, (d) 10, (e) 15, and (f) 20 years.

Ras
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Figure 1.16 Cut-away views of simulated salinity (left) and temperature
(right) distributions for the 3D thermohaline Elder problem at buoyancy
ratio of B = 5 and times of (a) 2, (b) 4, (c) 10, and (d) 20 years.

salinity temperature

a)

b)

c)

d)
PM=ö=cbcilt



NKU=bñ~ãéäÉë=çÑ=Pa=`Éääìä~ê=`çåîÉÅíáçå
a) b) c)

d) e) f)

Figure 1.17 Computed 3D isosurfaces of 50% salinity for the 3D thermohaline Elder problem (viewing from bottom to
top) at B = 5 and times of (a) 1, (b) 2, (c) 4, (d) 10, (e) 15, and (f) 20 years.
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Three-dimensional convective pattern formations in
domains representing a thin porous layer, i.e., for large
aspect ratios A, can be considered as a porous medium

equivalent of Bénard convection. As Elder23 studied
such a problem in 2D referred to as the ’long-heater
problem’ for a Rayleigh number of 200, an aspect ratio
A of 10, and an intrusion ratio  of 0.8. We extend this
’long-heater problem’ to 3D similar to the above Elder
problem. The remaining simulation parameters corre-
spond to that of the original Elder problem described in
the first part of this paper43. Due to the multicellular

a) b) c)

d) e) f)

Figure 1.18 Computed 3D isosurfaces of 50% temperature for the 3D thermohaline Elder problem (viewing from top to
bottom) at B = 5 and times of (a) 1, (b) 2, (c) 4, (d) 10, (e) 15, and (f) 20 years.

I

PO=ö=cbcilt



NKV=`äçëìêÉ
convection process in the porous layer a more refined
spatial discretization is needed compared with the 3D
Elder problem above. Moreover, no assumptions of
symmetry are made and, accordingly, the domain has to
be fully discretized. The finite element mesh for the
problem consists of 220,000 (100 x 100 x 22) hexahe-
dral trilinear elements containing 234,623 (101 x 101 x
23) nodes. Again, for the temporal discretization the
FE/BE predictor-corrector scheme with the full New-
ton method and a RMS-based convergence tolerance 
of   is applied to the simulation. 

NKUKOKO oÉëìäíë=~åÇ=ÇáëÅìëëáçå

The striking features of 3D Bénard convection
development are shown in Fig. 1.19. The initial motion
is characterized by a rectangular string of end-cells,
where at the four corner points the most intensive
growths of ’blobs’ can be observed. It is followed by a
growth of cells starting from the ends of the intrusion
area on top. At these times a remarkable feature of the
3D convection process is the annular roll pattern for-
mation. At smaller times the cell structures are rather
complex (Fig. 1.19b) showing the birth of subcellular
eddies both across and along the annular structure. Due
to the smaller Rayleigh number the nonroll-like pertur-
bations are smoothed at larger times and the convection
process results in a highly regular pattern of ring struc-
tures. 

NKV `äçëìêÉ

The finite-element method is applied to simulate
variable density flow processes in 2D and 3D ground-

water systems. The described solution strategies as
implemented in the simulator FEFLOW are more gen-
eral and are primarily developed to tackle complex
practical applications where solutal and/or thermal
density effects play an important role. However, before
more complex field situations can be studied the cho-
sen methods and codings have to be extensively tested
over a wider spectrum of this important class of nonlin-
ear problems. In this context the aim of the present
paper is mainly the proving and benchmarking of the
simulations along examples where comparable results
are available, or if not, the obtained results are to be
supposed as a comparison basis for further studies. We
have chosen the Elder and salt dome problem
(HYDROCOIN case 5 level 1) as well suited and rep-
resentative examples. They allow us both to participate
in the process of resolving partly contradictory results
given in the literature and to expand (or generalize) the
2D solutions to three dimensions and additional cou-
pling phenomena from a well-documented and
accepted source. The extensions concern thermohaline
and multicellular convection processes in 2D and 3D.
Unfortunately, to date both numerical and experimental
results of 3D and thermohaline convection are rare and
we are mostly dependent on an incremental procedure
in comparing and interpreting the results among one
another. In this context we found similarities and also
interesting new features regarding the pattern forma-
tions of the buoyancy-driven convection processes.


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Figure 1.19 Computed salinity patterns for the 3D Bénard convection problem at Rayleigh number of 200
and dimensionless times of (a) 0.013, (b) 0.026, and (c) 0.078.

vertical distributions at fences 50% salinity isosurface horizon at 0.9 d

a)

b)

c)

viewing from bottom to top
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The interaction between solutal and thermal con-
vection is studied by varying the buoyancy ratio B,
which expresses the relationship between buoyancy
forces due to solutal and thermal convection. Differ-
ences between (pure) saline convection and thermoha-
line convection become apparent for buoyancy ratios

. We found asymmetric convection patterns for
buoyancy ratios near to unity. In this situation, the
hydrodynamic system becomes strongly unstable
because the solutal and thermal buoyancy effects are
nearly equilibrated. As a result, very small vertical
velocities trigger the convection process. Grid effects
indicate the physical instability. The numerical solution
of thermohaline convection systems with buoyancy
ratios near to unity requires extremely fine spatial dis-
cretizations.

Three-dimensional convection needs sufficiently
high spatial and temporal resolutions if damping mea-
sures, such as upwinding, are to be avoided. At moder-
ate Rayleigh numbers (400 for the 3D Elder problem
and 200 for the 3D Bénard convection) we used more
than 50,000 nodes for a quarter of the domain and
about 230,000 nodes for the total discretization of a 3D
porous layer subjected to a free convection process. In
comparison with 2D, where it has been found43 about
10,000 nodes are required to accomplish satisfactorily
accurate results for the Elder problem, the chosen 3D
resolution seems to be a minimum for this class of
problems. Time marching is based on a predictor-cor-
rector strategy with an automatic time step control
embedded in a one-step full Newton method. For the
present examples more than 600 intrinsic time steps are
required for simulating a 3D convection process with a
duration of about 20 years for a convergence tolerance

  of .

It becomes clear that a long-term analysis of 3D free
or thermohaline convection takes a large numerical
effort and is normally a time-consuming task. While a
2D simulation is still on the order of hours of CPU
time, a 3D problem can take days of runtime on a
workstation. However, by using a high-speed worksta-
tion available today the 3D Elder problems and the
Bénard convection could be solved in one day and two
days of runtime, respectively. It should be taken into
consideration that the FEFLOW code is general and
not streamlined, for instance, for special cases of free
convection in rectangular domains with homogeneous
parameters. That means the impact and the found
efforts are representative for general problems having
an arbitrary geometry and permitting such parametric
and boundary conditions which are required in actual
site-specific applications19.
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The weak form of the continuity equation (1-1)
gives
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(A1)

Introducing the Darcy equation (1-2) into eqn (1-1) and
taking into account that the buoyancy term leads to

(A2)

by using the fluid density equation of state (1-5), fol-
lowing final weighted residual formulation of the con-
tinuity equation results

where the extended Boussinesq approximation term (1-
7) is incorporated. Equation (A3) represents the stan-
dard weak form of the substitution formulation to solve
the hydraulic head h. 

tÉ~â=Ñçêã=çÑ=íÜÉ=a~êÅó=Éèì~íáçå=ENJOF

Formally, a weak form of the Darcy equation can
easily be derived as

(A4)

to solve the vector of Darcy fluxes  at given h, C and
T.

tÉ~â=Ñçêã=çÑ=íÜÉ=ã~ëë=íê~åëéçêí=Éèì~J
íáçåë=ENJPF

The weak formulations for the divergent and con-
vective forms of the contaminant mass conservation
equations differ from the fact that for the former the
divergence theorem is applied both to the convective
and the dispersive terms

(A5)

while the conventional convective form applies the
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divergence theorem only to the dispersive (2nd order)
term

(A6)

Finally, it yields the following weak formulations

(A7)

for the divergent form and

(A8)

for the convective form, respectively, to solve the con-
centration C.

tÉ~â=Ñçêã=çÑ=íÜÉ=ÜÉ~í=íê~åëéçêí=Éèì~J
íáçå=ENJQF

Similar to the above, the weak formulation of the
convective form of the heat transport equation is given
by

(A9)

for solving the temperature T.

cáåáíÉ=ÉäÉãÉåí=Ñçêãìä~íáçåë

Employing the Galerkin version of the FEM
(GFEM), , for the above weak formulations
and replacing the h, , C and T variables by their trial
approximations

(A10)

the matrix coefficients of eqn (1-8) are as follows:

(A11)

(A12)
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A global approximation of the smoothed Darcy
velocities can be written as

(B1)

Assume that we have an unsmoothed (discontinuous)
velocity field , then the smooth function which
provides a best fit in the least squares sense over the
domain  can be obtained from a minimization of the
functional

(B2)

The minimalization procedure

(B3)

or

(B4)

results in a system of linear equations to solve the
smoothed velocities , viz.,

(B5)

where  represents the mass matrix and  is the
RHS involving the unsmoothed relations. They are
formed in the finite element assembling procedure as
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(B6)

and, by inserting the Darcy velocity components, as

(B7)

Note, the least square approximation of global smooth-
ing (B7) is equivalent to the Galerkin weighting proce-
dure (A16) in Appendix A.

A cost-effective alternative appears if the mass
matrix  is lumped by an row-sum or diagonal scal-
ing

(B8)

without need to solve the linear equation system (B5).
Mass lumping can be shown to be equivalent to an
area-weighted averaging for nodal values.

içÅ~ä= ëãççíÜáåÖ= çÑ= ÇáëÅçåíáåìçìë
îÉäçÅáíó=ÑáÉäÇë

Unlike global smoothing, there is an efficient way
to smooth velocity fields by using only individual ele-
ment information. This is termed as local smoothing45

and provides a simple nodal averaging based on the

number of elements joined at a given node (element
patch). Among several approaches suggested
FEFLOW employs following two-step local technique:

(Step 1) The discontinuous velocity in each element 

(B9)

is computed at the Gauss points  (2 x 2 (x 2) for linear
and 3 x 3 (x 3) for quadratic elements) with given
approximations of the hydraulic head , concentration

, and temperature  for element  from previous
solutions.

(Step 2) The values at the Gauss points are assigned to
the nearest corner node . Each nodal contribu-
tion is summed up and, at the end, the nodal values are
averaged by their number of nodal contributions 
from the patch sharing the node 

   (B10)
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The budget analysis aims at the computation of the
normal convective mass (or heat) fluxes

. Multiplying each term of the continuity

equation (1-1) by concentration C we get the weak
form

(C1)

It is further

(C2)

Employing the divergence theorem on the LHS of
identity (C2) we obtain from (C1) and (C2)

(C3)

It has been found to evaluate the individual terms of
eqn (C3) in different ways. While the velocity  in the
first term of the RHS is expressed by the Darcy law, the
second RHS term uses explicitly the velocity from the

computation. The LHS surface integral describes
already the desired convective mass flux along the
boundary portion , where  is the normal
fluid flux and  is the normal convec-
tive mass flux through the boundary.

Finally, following finite element formulation results
to compute the normal convective mass flux from
given solutions (A10) of hydraulic head , Darcy flux

, concentration , and temperature 

(C4)

All contributions of mass flux are summed up at node
 to obtain the lumped nodal balance mass flux  in

the form

(C5)

which is defined positive inward and will be used for
the boundary constraint control (see Section 1.6). Simi-
lar expressions to (C4) and (C5) can be derived for heat
balance fluxes if  is used as multiplier.
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