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1.1 Introduction

In shallow aquifers a modern geothermal heat
extraction technology (geoexchange) concerns the use
of Borehole Heat Exchanger (BHE) systems of differ-
ent construction. The most common in practice are sin-
gle U-shape pipe (consisting of an inlet pipe, an outlet
pipe and grout), double U-shape pipe (consisting of
two inlet pipes, two outlet pipes and grout) and coaxial
pipe (consisting of an inlet pipe included with an outlet
pipe and grout) installations. Such heat exchangers
form a vertical borehole system, where a refrigerant
circulates in closed pipes exchanging heat with the sur-
rounding aquifer driven alone by thermal conductivity
(closed loop system). However, the extreme geometri-
cal aspect ratios (extreme slenderness), typically
involved in those boreholes, require an advanced
numerical strategy, where the BHE systems are mod-
eled by 1D finite-element representations. We mainly
follow the ideas proposed by Al-Khoury et al.'*2, who
firstly used 1D single and double U-pipe elements in
the context of geothermal heating systems. Al-Khoury
et al’s numerical strategy is further extended and
adapted to the FEFLOW simulator with respect to the
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following:

* Generalization of the formulations for single and
double U-shape as well as coaxial pipe configura-
tions.

* Improving pipe-to-grout approximation method
by using multiple grout points in application to
single and double U-shape pipe exchangers.

* Improving relationships for thermal resistances of
BHE.

* Integrating the 1D BHE pipe elements into
FEFLOW?’s finite-element matrix system similar
to fracture elements.

* Direct and non-sequential (essentially non-itera-
tive) coupling of the 1D pipe elements to the
porous medium discretization.

* Extending FEFLOW’s boundary conditions for
BHE pipes similar to multi-well borehole condi-
tions.

In addition, the local processes within BHE can also
alternatively be modeled via an analytical technique
under the major assumption that Jocal steady-state con-
ditions are considered, where a thermal equilibrium
immediately occurs between inlet and outlet pipes for a
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given solid temperature at the borehole wall. Such type
of analytical solutions has been firstly introduced by
Eskilson and Claesson'?. Their local analytical model
is taken as an alternative to the general Al-Khoury et
al.’s numerical strategy, particularly for long-term pre-
dictions. We will extend Eskilson and Claesson’s ana-
lytical solution to different types of BHE and embed it
in a general iterative finite-element strategy for solving
the overall problem. Al-Khoury et al.’s numerical and
Eskilson and Claesson’s analytical strategies will be
compared and tested. While the Al-Khoury et al.’s
numerical approach has proven appropriated over the
full time range of processes, Eskilson and Claesson’s
analytical solution is not suited for short-term predic-
tions (say, thermal responses in a time range smaller
than some hours), however, for long-term predictions
the analytical solution has been shown in a well and
reasonable accuracy in comparison to the general Al-
Khoury et al.’s numerical strategy. In FEFLOW both
modeling approaches are available and can be chosen
in accordance with the specific needs in modeling.

1.2 Types of BHE

1.2.1 Double U-shape pipe (2U)

The double U-shape pipe (2U) exchanger is a cylin-
drical borehole consisting of two inner pipes forming a
U-shape and filled with a grout material as shown in
Fig. 1.1. Basically, the grout can be considered as a
homogeneous material and could be schematized by
only one component so as proposed by Al-Khoury et
al."2. However, to improve the approximation of the
inner pipe-to-grout heat transfer we introduce a larger
number of grout components, which correlates with the
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number of pipes of BHE. This has some advantages:
(1) A better accuracy results in modeling the transient
behavior of U-shape pipe exchangers. (2) It allows a
much higher flexibility in configuration of U-shape
pipe systems, particularly, the U-shape pipes can be
arranged crosswise or side by side. (3) Furthermore,
the flow through double U-shape pipe configurations
can be parallel or serial.

In total, we schematize a 2U exchanger by eight com-
ponents:

* two pipes-in (denoted as i/ and i2)

* two pipes-out (denoted as o/ and 02)

* grout material, which is subdivided into 4 zones
(denoted as g/, g2, g3, g4)

The four pipe components i/, i2, o1, and o2 transfer
heat across their cross-sectional areas and exchange
fluxes across their surface areas. The radial heat trans-
fer from the pipes is directed to the grout zones gi (i =
1,...,4). The grout zones gi (i = 1,...,4) exchange heat
directly to the surrounding soil (the porous matrix with
the filled fluid in the void space) denoted as s and to
other contacted grout zones too. It can be seen that, as
physically occurring, the heat coupling only occurs via
the grout zones gi (i = 1,...,4), which work as interme-
diate media that transfer heat from one pipe to another
and vice versa. Only the grout zones exchange heat
with the surrounding soil s because there is no direct
thermal contact between the pipes i/, i2, ol, and o2
with the soil s.

FEFLOW | 3



The 2U system involves several material and geo-

(e
metrical parameters, which are either given by the
manufacturer of the heating systems or determined
: experimentally. These relations are used to express the
overall thermal resistance between the 2U borehole and

the soil. The usual practice is to lump the effects of the
2U components into effective heat transfer coefficients
representing the reciprocal of the sum of the thermal
resistances between the different components. The
T, inner pipe-grout heat flux resistance relationships are
shown in Fig. 1.2. Their analytical descriptions will be
given in Chapter 1.5.

50-150 m

Figure 1.1 Schematization of a 2U-type BHE (from Al-
Khoury and Bonnier?).

Figure 1.2 Inner pipe-grout heat flux resistance relationships of a 2U borehole consisting of four pipe compo-
nents and four grout zones (exemplified for a crosswise configuration).
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1.2.2 Single U-shape pipe (1U)

The single U-shape pipe (1U) exchanger can be eas-
ily degenerated from a 2U configuration when drop-
ping the second U-tube. A 1U configuration only
consists of four components:

* one pipe-in (denoted as i/)

* one pipe-out (denoted as o/)

* grout material, which is subdivided into 2 zones

(denoted as g/, g2)

Similar to the 2U exchanger the U-tube of the 1U con-
figuration transfers heat in radial direction to the grout
zones gi (i = 1,...,2), while the grout material zones
exchange heat directly to the surrounding soil s and to
the adjacent grout zone. The corresponding inner pipe-
grout heat flux resistance relationships are shown in
Fig. 1.3.

Figure 1.3 Inner pipe-grout heat flux resistance relationships of a 1U borehole con-
sisting of two pipe components and two grout zones.

1.2.3 Coaxial pipe with annular
(CXA) and centred (CXC) inlet

This type of BHE consists only of three components:
* one pipe-in (denoted as i/)
* one pipe-out (denoted as o/)
» grout material considered in one zone (denoted as
gl)
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Such coaxial BHE systems represent pipe-in-pipe
installations, where two principal cases occur. In the
case of the CXA exchanger the pipe-out is configured
inside the pipe-in as shown in Fig. 1.4 forming an
annular inlet and a centred outlet. Accordingly, the heat
exchange to the grout material g/, which is in contact
to the surrounding soil s, is only performed via the

FEFLOW | 5



6 | FEFLOW

pipe-in i/. On the other hand, the pipe-in i/ exchanges
heat with the pipe-out o/ component. The coaxial pipes
can also be installed with interchanged inlet and outlet.
This represents the CXC exchanger, where the pipe-in
is configured inside the pipe-out as shown in Fig. 1.5

forming a centred inlet and an annular outlet. Here, the
heat exchange to the grout material g/ is only per-
formed via the pipe-out o/.

Figure 1.4 Inner pipe-grout heat flux resistance relationships of a CXA borehole

with annular inlet.

1.3 Soil Equations

1.3.1 Basic equations

They describe the model equations for the global prob-
lem of the subsurface in form of balance laws for fluid
mass, fluid momentum and thermal energy of soil s and
fluid f© The conservation equation of fluid mass is
given by

oh
S5 V-4 = 0+ Ocop (1-1)

where the used symbols are summarized in Appendix
C. The flux ¢ in the porous medium is expressed by
the Darcy law as

_f
q = —Kfu(Vh+ o fp OeJ (1-2)
Po

with the constitutive equations for fluid density and



Figure 1.5 Inner pipe-grout heat flux resistance relationships of a CXC borehole with

centred inlet.

viscosity

o = phl1-B(T,~ T,)]

r (1-3)
f = i—(; W = ()

The conservation equation of thermal energy in the soil
s can be expressed as

R T VN R Y C L 7 S ()
~V.(L-VT,) = H,

with the tensor of thermal hydrodynamic dispersion
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L= [eX +(1-e) '+ pfc’[aannI (1-5)

q®q}
t(o; —op) 5o
(=) g

and the term of extended Oberbeck-Boussinesq
approximation

oT,
Orop = B(q~VTS+aa—t‘) (1-6)

1.3.2 Thermal boundary conditions

The boundary of the domain Q is denoted by T,
which can be subdivided in a number of disjoint por-
tions T';,T', and T’y . The boundary conditions (BC) on
these boundary portions associated with the thermal
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field of the soil s are given as follows:
1.3.2.1 Dirichlet-type BC

T(x,t) = TX(t)  on  T,xt[0,0) (1-7)

1.3.2.2 Neumann-type BC

Gur (%1 = qyr (1) = «(L-VT,) (1-8)
on I, x t[0,0)

1.3.2.3 Cauchy-type BC

G
anJ(x’ 1) = _z CDsg(Tgi_Ts) (1-9)
i=1
on I'; x [0,00)

which represents an interaction surface with the bore-
hole controlled by the heat transfer coefficient
®,, = @, between the soil and grout material zones

of the borehole. In (1-9) G denotes the number of grout

_(p c T1)+V (p cuT 1)—V-(Lr

_(ch2)+V (pcuTz) \ (L

zones, which is 4 for 2U, 2 for 1U, and 1 for CXA and
CXC.

1.4 BHE Equations

The processes within the borehole are considered as
a local problem, which is linked to the global (soil-
related) problem via thermal transfer relationships.
They are formulated by energy conservation equations
for the BHE components consisting of pipe(s)-in,
pipe(s)-out and grout zone(s).

1.4.1 2U exchanger

The BHE represents a closed pipe system, where a
refrigerant fluid is circulating with a given velocity u.
The heat transport equations for the eight borehole
components of a 2U configuration can be written as
follows

VT = Hy in Q)

(1-10a)
with dur, = qDﬁé(T -T;) on ry
VT,) = in Q,

(1-10b)
/lg(T T;) on Ty

with dur, =



a .
E(prchol)+V-(prcruTol)fv-(Lr-VTUI) =H, in

. 2U
with dur,, = _q)fog(Tg3 -7, on

d, rr , .
E(prc’ T,)+V-(p'cul)-v-(L"-VT,,) = H, in

with

with

with

with

. 2U
with dut,, = —<Dfag(Tg4 -T,) on

0 .
E(agpgchgl)fv~(sgkgVTg1) = H(gl in

20 20 2U
angl - _CDgS (TS_ Tgl)_q)ﬁg(Til - Tgl)_q)ggZ(TgZ - Tgl)

2U 2U
1 (Tg3 = Ty )Py (Tgy = Tyy) on

0 .
E(gngCngz) -V. (sgkgVng) = ng in

2U 2U 2U
q"ng - _CDgS (Tv - Tg2)_®ﬁg(T52 - ng)_q)ggz(Tgl - ng)

2U 2U
1 (Ty3 = Tgp)— D1 (Tgs = Tyr) on

0 r g ; .
E(sgpéc‘gT‘gG)—V-(sg}ué’VTg3) = Hg3 in

2U 2U 2U
ang3 = 7cDgs (Ts - TgS)ichog(Tol - Tg3)7q)gg2(Tg4 - Tg3)

20 20
—CDggl(Tgl—Tg3)—<l)gg1(Tg2—Tg3) on

0 r g ; .
E(sgpéc‘ng4)—V-(sg}ué’VTg4) = Hg4 in

U

2U 2 2U
ang4 = 7cDgs (Ts - Tg4)7q)f0g(T02 - Tg4)7q)gg2(Tg3 - Tg4)

2U 2U
—(Dggl(Tgl—Tg4)—(Dgg1(Tg2—Tg4) on
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ol

ol

QOZ

roZ

Q,

g2

Ty

Qg3
r

g3

Qg

Loy

(1-10¢)

(1-10d)

(1-10e)

(1-10f)

(1-10g)

(1-10h)
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where 1.4.2 1U exchanger

For the 1U exchanger only four borehole compo-
nents exist consisting of one pipe-in, one pipe-out and
two grout zones. In this case the equations (1-10b), (1-
10d), (1-10f) and (1-10g) are irrelevant. It results

L' =\ +p'colulr (1-11)

0 . .
E(prchil)+V-(prc’uTl.l)7V~(Lr~VT”) = H, in o
(1-12a)
. U
with dut, = —<I)ﬁg(Tg1 -T;) on ry
0, r .
E(p'chnl)JrV~(prcruT01)—V-(Lr-VTol) =H, in Q,,
(1-12b)
. U
with dur,, = 7(Dfog(Tg27Tol) on I,
0 g8 g - i
E(agp c Tgl)fv-(sgk VTgl) = Hg1 in le
(1-12¢)
. 1u 1u U
with Gur, = Qg (T,= Tg)~@p(Tyy =Ty )Py (Tgy = Tyy) on Ty
0 g g g - :
E(sgp c ng)fv . (sgx Vng) = ng in ng
(1-124d)
. 1u 1u 1u
with dnt,, = —(I)gS (T,- ng)—(l)fog(Tn1 - ng)—(l)gg(Tg1 - ng) on ng

1.4.3 CXA exchanger

A CXA exchanger only encompasses three borehole
components consisting of one pipe-in, one pipe-out and
one grout zone. The heat transport equations read



a rr rr r _
a(pcTl.l)JrV~(pcuTl.1)—V-(L -VT;,)) = H,

. CXA CXA
with dur,, = = Ppig (Tg1=T;) = Pp (T5 = Tjy)

a ror rr r _
E(p cT,)+V-(pcul,)-V-(L -VT,)) = H,,

. CXA
with W, = Py (T —T,)

0 g g g _
E(egp c Tgl)—V-(sgk VTgl) = Hg1

. CXA CXA
with Gur, = = Ve (T,=Tyg) = @ (T = Typ)

1.4.4 CXC exchanger

Similarly to the CXA exchanger a CXC exchanger
contains three borehole components consisting of one
pipe-in, one pipe-out and one grout zone. The only dif-
ference is that the CXC exchanger with centred inlet
pipe configuration the pipe-in only exchanges heat
with the pipe-out. In this case the heat transport equa-
tions are given by
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in

on

on

in

Q[1
(1-13a)
l—‘il
Qol
(1-13b)
l—‘ol
Q,
(1-13c¢)
r
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d, r .
E(p'chil)+V-(prcruTil)—V-(Lr-VTil) =, in Q;

(1-14a)
. CXC
with dur, = D (T,,-T;) on ry
%(prchol)-ﬁ-V “(p'cur,)-v-(L"-VT,) = H,, in Q,,
(1-14b)
. CXC CXC
with dur, = —<I>f0g (Tgl—Tnl)—d)ff (T, -T,) on r,;
0 s 3 .
a(a‘g,pgcj’Tgl)—V . (agk‘gVTgl) = Hg1 in le
(1-14c)

CXC

with dnt, =

Note that (chj_fo # (D/Cfxc due to the different pipe radii

for pipe-in and pipe-out in a coaxial pipe installation.

1.5 Thermal Resistances

Thermal resistances are determined from the physi-
cal, material and geometric engineering parameters of
the different BHE configurations as shown in Fig. 1.2
for the 2U exchanger, in Fig. 1.3 for the 1U exchanger,
in Fig. 1.4 for the CXA exchanger and in Fig. 1.5 for
the CXC exchanger. As indicated there the interaction
between the different components of the pipe exists
between the pipe-in and grout zone(s), the pipe-out and
grout zone(s) as well as the pipe-in and pipe-out. The
following thermal resistances can be derived.

CXC
— @, (T,=T,) -y (T, ~T,)  on T

1.5.1 2U exchanger

The thermal resistance between the pipes and grout
zones is caused by the advection of the pipe flow and
thermal conductivity of the pipe wall material specified
separately for pipe-in and pipe-out

20 _ 52U 2U 2U . .

Riig = Rugy,* Ry ¥ R o (k=ilni2) (1-15a)
2U _ 20 2U 2U _

Rjpg = Ruay, TR ot R0 (k=01M02) (I-15b)

1.5.1.1 Thermal resistance due to the
advective flow of refrigerant in

the pipes
i(lijvk = ! " (k=1i1,01,i2,02) (1-16)
Ny A'n



In (1-16) the Nusselt numbers, Nu, (k =il,01,i2, 02),

4.364

(£,/8)Re,Pr { +[ Z]
1+12.7,[6,/8 (Pr> — 1) L

(1-7,) 4364+

iN2/3

, { (0.0308/8)10" Pr
k
1+12.7 J0.0308/8 (Pr™> — 1)

in which Pr represents the Prandtl number and Re, are
the Reynolds number defined as

- 2U i
"¢’ Re, — |y d

A (w'/p"

(k=il,01,i2,02) (1-18)

where _dj-{ are the inner diameters of the pipes
d, = 2r, (k=il,0l,i2,02). Furthermore, L corre-
sponds to the length of the pipe and

g, = (1.8 log,gRe;~ 1.5)
Re, - 2300 (1-19)

(= ——— (0<y,<1)
10* - 2300

Itis
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differ between laminar and turbulent flow?!, viz.,

for laminar flow if Re, <2300

for turbulent flow if Re, > 10*

(1-17)

- i
1+ (-1%{] }} for flow in transition range if 2300 < Re; < 10*

er for parallel discharge
U 21r(r2) ) _
|| = 0 (k=1il,01,i2,02) (1-20)
- for serial discharge
n(ry)

where Q, is the total refrigerant flow discharge of the
2U exchanger.

1.5.1.2 Thermal resistances due to the
pipes wall material and grout
transition

w o _ G/

B (k=il,01,i2,02)  (1-21)

where 7{71, k‘;l, kfz, kﬁz correspond to the thermal con-

ductivities of the pipe wall material.
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R (1-22)

with

=" o (1-23)

and

. D +d -5
- arcos Tdo E
3.008-44325 (1-24)

where D denotes the borehole diameter, d, = iZdZ is
k

the averaged outer diameter of the pipes
dz = 2rZ (k=1il,01,i2,02) and s = w.2 corre-
sponds to diagonal distance of pipes (see Fig. 1.2).

1.5.1.3 Thermal resistance due to inter-
grout exchange

2U, ,2U 2U ,2U
2U1 _ 2Rgs (Rarlizx Rg ) (1-25)
88 2U 2U 2U 2U
2Rgs 7Rarl+2x Rg

2U 2U ,2U
ar272x Rg)

T 20 2U 2U ,2U
2Ry — Ry +2x" R,

(sz - di}
arcosh

2
2U do

2m08

2U
RZU B 2Rgs (R
gg2

with

25" - dﬁ]
2

dO

218

arcosh[
2U

ar2

(1-26)

(1-27)

(1-28)

1.5.1.4 Thermal resistance due to grout-

soil exchange

2U 2U, ,2U
Ry = (1-x"")R,

1.5.2 1U exchanger

Itis
1 _ ,IU 1U 1U _
Rjig = RadV/c conj * Rconb (k=il)
w _ U U U B
Rng B Radvk * Rconz * Rcon’7 (k -0 1)

(1-29)

(1-30a)

(1-30b)



1.5.2.1 Thermal resistance due to the with
advective flow of refrigerant in

the pipes
R;ka S - (k=il,01) (1-31)
Ny A'm
4364

2/3

(€,/8)Re,Pr [ [d;] }
1+| =
14127 /6,78 (Pr7 — 1) L

for laminar flow if Re; <2300

for turbulent flow if Re; > 104

Nu, = (1-32)
(1-7y,) 4364+
ix2/3
4 d
k{ (0.0308/8)10 P;/3 {1 + [Tkj }} for flow in transition range if 2300 < Re, < 10*
1+12.7 ,f0.0308/8 (Pr™"” —1) L
where 1.5.2.2 Thermal resistance due to the
pipes wall material and grout
- 10 ;i oge
W |uy| ~dy , transition
Pr = }LV Rek = m (k: 11,01) (1-33)
n/p ;
d w In(r/ry)
an L et (k=il,ol) (1-36)
conk 21_[7\‘[];
g, = (1.81og,gRe,—1.5) "
1U 1U ,1U
Re, - 2300 (1-34) Rcon,, =X Rg (1-37)
- — (0<y,<1) .
10" —2300 with
"V = Q S (k=ilol) (1-35) N D> +2d
2n(ry) . 2d,
o= — (1-38)
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and CXA CXA . ,,CXA

CXA
Ry = Rygy +Radv?1 +Reon,, (1-43a)
2 2 2
D +d —w
arcosh£——2—D—”?i——] Rt = RS+ RN+ RO (1-43b)
u 0 W adv;; il con
Ry = (1.601 —0.888—) (1-39)
2mAf D
1.5.3.1 Thermal resistance due to the
where w corresponds to distance of pipes (see Fig. advec.t've flow of refrigerant in
1.3). the pipes
1.5.2.3 Thermal resistance due to inter- Racd’iAl = ;r (1-44a)
grout exchange NuyA'n
1U, ,1U 1U ,1U d
1U _ 2Rgs (Rar —2x Rg ) (1_40) RCdX‘:,\ = 1 B —-oi (1-44b)
€8~ JplU_pIU 10,10 i Nug Mmooy,
gs ar
with d
cxa__1 % (1-44c)
2 2 W N d)
2w —d
arcosh[ > Oj with
d
1U
R, = ————"— (1-41)
2728

1.5.2.4 Thermal resistance due to grout-
soil exchange

1g

v U
Ry = (1-x'")R,

(1-42)

1.5.3 CXA exchanger
Itis
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Nu

ol

Ny, =

where

4.364

(&01/8)Re,, Pr

[ (di;
1+|—=
-1) L

1

2/3

) ]

for laminar flow if Re,,; < 2300

for turbulent flow if Re,, > 10*

1+12.7,E,,/8 (Pr*”? (1-45a)
i N2/3
4 d‘
(1-7,,) 4364 + yvl{ (0.0508/8)10 Pr 1+[4‘J } for flow in transition range if 2300 < Re,, < 10°
1+12.7 J0.0308/8 (Pr*° 1) L
do 0.04
366+ |4- —2102 (——‘] for Re;, < 2300
(d:}moz i
djy
0.84 0.6
oss[d—ZlJ {1—014[‘1—2‘] }
1/ 8)Re; Pr ARE d, d
(5i1/8)Re;, L. [lJr(Th) } 1 1 foch“2104
1+12.7,/&,/8 (Pr° —1) L . [dglJ
+| =
djy
(1-45b)
da 0.04
(1-y,)13.66+ |4 —2192 [L‘] +
le dil
— | +0.02
djy
dn 0.84 do 0.6
086|-2| +|1-0.14 —”,‘]
(0.0308/8)10" Pr dp2/3 [dﬁlj { [d:’l 4
T - - [ +(T) } for 2300 < Re;, < 10
1+12.7 /0.0308/8 (Pr*"" 1) L H[djl]
dyy
we ‘uol‘CXAdi)l ’ 11’CXAdh
Pr = Re,, = Re; (1-46)
r r r r r
A (w/p) (L/7p)
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and

d, = di:l ~-d,

ol

B -2
€, = (1.81log, Re,—1.5) (k=il,01) (1-47)

Re; - 2300
Y=~ —— (0<y,<1)
10" —2300
CXA _ 0,
‘uOl‘ - i 2
27t(r01)
(1-48)
CXA _ 0,
1] -

i (2 0 \2
2n[(r;) = (o) ]

1.5.3.2 Thermal resistance due to the
pipes wall material and grout
transition

(/1)

CXA Tk .

con, — —-—--—-——p (k=1il,01) (1-49)
2757»,{

CX? _ xCXARCXA (1_50)

con 4

R

with

s 2 (1-51)

and

0
REXA _ In(D/d;))

(1-52)
£ 218

1.5.3.3 Thermal resistance due to grout-
soil exchange

CXA

CXA CXA
Ry " = (1-x""R, (1-53)

1.5.4 CXC exchanger

It is
CXC CXC CXC CXC
Rff = Radvil * Radvzl * RCO“M (1-542)
CcXCc _ ,CXC CXC CXC
Rf"g B Radvﬁ1 * Rconul * Rcon/J (1-54b)

1.5.4.1 Thermal resistance due to the
advective flow of refrigerant in

the pipes
CXC 1
Rogy, = - (1-55a)
Nu; A n
d
= L5 (1-55b)
Ao Nuolkrn d?l
d
exe 1 = (1-55¢)
advy, Nu, A d,,

with



4.364 for laminar flow if Re;; <2300
2/3

(§:1/8)Re;, Pr |:l+[d§1j }
Nu;, = {1+12.7,/8,78 (Pr>— 1) L

(0.0308/8)10* Pr
1+12.7 J0.0308/8 (Pr** - 1)

for turbulent flow if Re;; > 10*

2/3

(1*711)4-364"'711{ I

&
366+ | 4-—2102 [ i

0.04
__] for Re,, <2300

d(')l d:)l
Tf +0.02
d

ol

0.84 0.6
0.86 [d—’ol] {1-0‘14 [ﬂj }
(&,1/8)Re,, Pr [1 +(@)2/3} dy, dyy
2/3 T 0
1+12.7,f€,,/8 (Pr" — 1) L 1+[@)
di

ol

for Re, > 10*

Nu,, =
do 0.04
(1—,){3.66+|4- —2102__ [—"] +
d;}l ol
- +0.02
ol
o 0.84 do 0.6
\ 0.86 [T]J {170.14 [T"] }
dN\2/3 d d
Tor (0.0508/8)10 Pr [H(T”) } ol ol for 2300 <Re, | < 10°
1+12.7 ,/0.0308/8 (Pr™""— 1) L H[dfl]
dy
where
CXC i cXC
u'e gy Ui " d,
Pr = Re;, = Re,| =
r 4 r,r o r,or
A (n/p) (n/p)

©DHI | www.mikepoweredbydhi.com
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[1 + [—ﬂ) }} for flow in transition range if 2300 <Re;; < 10*

(1-56a)

(1-56b)

(1-57)

FEFLOW | 19



20 | FEFLOW

and

i o
dy = dyy —dy
-2
€, = (1.81og,oRe, - 1.5) (k=il,01) (1-58)
Re, - 2300
o= = (0sys))
10" —2300
cxe 9,
|| - P2
2n(r;;) (1-59)
CcXC _ 9,
|"0ﬂ B

i \2 0.2
2n[(ry,y) — () ]

1.5.4.2 Thermal resistance due to the
pipes wall material and grout
transition

(/1)

CXC k" 'k .

con, =~ (k=1il,01) (1-60)
2n7»k

CXS _ xCXCR(,:XC (1-61)

con g

R

with

[ ID* + (dzl)zJ
In| A "ol
CXC

(1-62)

and

In(D/d,
RS = (D7d,)) (1-63)
2
1.5.4.3 Thermal resistance due to grout-
soil exchange

CXC

)R (1-64)

cxXc cXC
Rgs =(1-x <

1.5.5 Notes to negative thermal
resistances of grout for 2U and
1U exchangers

In dependence on geometric measures for 2U and
1U exchangers negative thermal resistances for grout
2U 2U plu L
Rog1» Rggrs Ry may occur. This is caused by the
applied model conception of grout zones and can be
accepted in both numerical and analytical BHE models.

However, the following constraints have to be satisfied:

-1
—+—=| >0
20 20
Ryg1 2Ry,

-1
[ 1 : )
—+—=| >0
2U 2U
Regr 2R

(1-65)

for 2U exchangers and
1 1)
[m + ———ITJ] >0 (1-66)

for 1U exchangers.



In cases where (1-65) or (1-66) are violated the val- 1.6.1 2U exchanger
ues of x*Y and xlU, respectively, have to be reduced
until the constraints (1-65), (1-66) are met. The follow- v 1 1

oV = 1
ing correction procedure is applied: fig Rf.U S;
fig
. 2U 1 1
«If (1-65) or (1-66) are violated reduce Qe = S0 5
R, o
sl = 234" and check (1-65) or (1-66). o
. . Q.1 = 57 T
«If (1-65) or (1-66) are still violated reduce sgl R2U1 Sq1 (1-67)
g8
201U _ 1 L2U1u
Xoow = %o and check (1-65) or (1-66). q)égz _ 21U §1_
«If (1-65) or (1-66) are again violated set Rogr "2
20,1U _ v 1 1
Xpew = 0. q)gs = RE g
gs
1.6 Heat Transfer Coefficients 1.6.2 1U exchanger
The heat transfer coefficients V- _L 1
@, D ®,,®,. ®, specified for the e plUS,
flg’ fog’ o1 Pogr Pppp P p fig !
Xgli and CXC conﬁguratlons are related to 11
thermal resistance relationships R . Due to the analogy e = T S
of Fourier’s law for heat flow and Ohm’s law for elec- Ripg (1-68)
tric current flow simple formulations can be derived to V- _L L
lump the effects of the BHE constituents into an effec- g8 RI’U Sql
tive coefficient representing the reciprocal of the sum - ig |
of the thermal resistances acting on their specific Q0 = T 5
exchange surfaces S between the different compo- Ryg "o
nents.
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1.6.3 CXA exchanger

1.6.4 CXC exchanger

oCA _ 11 _ 11
fig REXA S, B REXC S
fig ! fog ¢
q)CXA __1 1 _ 1 1
/A RCXA (1-69) B RCXC 5, (1-70)
ff 10 jf 10
XA - 1 1 __1 1
gs CXA cXC
Rgs &S gs 8s
where the specific exchange surfaces S are given as
follows
(1-71)
2U 1U CXA CXC
S “d;1.12 “djl “dil -
S, ndi}l,vZ “df;l - nd,,
Sio - - nd,, nd;,
Sg1 %D D - -
S D - - -
Seq =nD =nD nD nD
1.7 User-specified Thermal tances result for instance from Thermal Response

Resistances

From practical point of view it could be useful to
specify directly thermal resistances which have been
measured in the field. Such field-related thermal resis-

Tests's. In such cases the borehole thermal resistance
R, and the internal borehole thermal resistance R, are
determined according to the definition introduced by
Hellstrom'?. With R, and R, the complete set of ther-
mal resistances and heat transfer relationships for the



BHE models can be determined in dependence on the

numerical (Al-Khoury ef al.’s"?) and analytical (Eskil- R;éjv = _( Ra g ¥ R;}ijv )
. . il ol
son and Claesson’s!?) solution strategies. (1-76)
RU = l(RlU LR )
con 2\ cony| conj

1.7.1 Numerical BHE solution

1.7.1.1  2U exchanger we replace (1-39) by
Defining
Ry’ = 2R, Ryg,— Ry (1-77)
2U 2U
Regv = _(Radv +Radv +Radv +Radv 2) and (1-41) by
w 1( 2 2u 2U 2U (1-72)
Reon = Z(Rconfl+Rconfz+Rcongl +Rcong) RY = R, —2(R!Y +R!Y) (1-78)
1.7.1.3 CXA exchanger
we replace (1-24) by
Replace (1-43a) by
V= 4R, -R R (1-73) o
Ry " =R, (1-79)
and (1-27) and (1-28) by and (1-52) by
CXA CXA CXA
o QDR (R, Rog,~Riy) RS = Ry=R_. % ~Regn, - (1-80)
arl — (1-74) ll
Rg JrRa_Radv_Rcon respectively.
R = 2R (1-75 1.7.1.4 CXC exchanger
Replace (1-54a) by
1.7.1.2 1U exchanger
CXC
Defining Ry =R, (1-81)
and (1-63) by
CXC CXC CXC
R, = Ry- Rad 7Rmal, (1-82)
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respectively.

1.7.2 Analytical BHE solution
1.7.2.1 2U exchanger
Replace (1-15a) and (1-15b) by

2U
Riig = 2R,
2U
Riog = 2Ry
and (1-29) by
2U
RY - 2R,

Furthermore, we replace (1-25) and (1-26) by

2w _ BRy(R,—2R)
ggl 4R, - R,

and

U 2U
Rgg2 B Rggl’

respectively.

1.7.2.2 1U exchanger
Replace (1-30a) and (1-30b) by

1U
Rfig =R,
1U
Rfog =R,
and (1-42) by
1y
Rgs = Rb

(1-83)

(1-84)

(1-85)

(1-86)

(1-87)

(1-88)

Furthermore, (1-40) is replaced by

1w _ 2Ry (R, —2Ry)

28 4R, - R,

1.7.2.3 CXA exchanger
Replace (1-43a) by

CXA _
Ry =R,
and (1-43b) by
cxa Ry
Rig = D)
as well as (1-53) by
cxa Ry
Ry = =

1.7.2.4 CXC exchanger
Replace (1-54a) by

CXC

Ry = R,
and (1-54b) by
cxe _ Ry
Rppg = B3
as well as (1-64) by
cxe _ Ry
Rgs - _2_

(1-89)

(1-90)

(1-91)

(1-92)

(1-93)

(1-94)

(1-95)



1.8 Finite Element Discretiza-
tion of the Local Problem

equations (1-10a) to (1-10h), which will be discretized
by finite elements. Introducing the spatial weighting
function w the following integral formulations hold

1.8.1 Weak statements
1.8.1.1 2U exchanger

We start with the more general 2U heat transport

or;,
j[wprcr(__a_;_+u.vTi)+vW (L"-vr, )}d9+ jquﬁg T,,dl = jw g T A0+ ij dQ (1-96a)
Qil ril 1—‘il Qil
or,
J[wprc (-5t—+u VT, )JFVW (L VTZ)}dQ+ [ Wi Tpdr = [ woll T dr+ [ wHydo (1-96b)
QiZ riZ ri2 QIZ
or,
”wp’c’( 2L+ u. VT, )+ Ve @ vr 1)}d§2+ [ a7, dr = jw o Teadl + [ wH,dQ  (1-960)
Qal l—‘al Qol
0T,
| [wp’c’( 24y VT, )+ V(L VTZ)}KH [ wao T, dr = J.w o TeadT+ [ WH,,dQ  (1-96d)
QaZ FaZ QOZ
g 5971 28 p U, 2U, - 2U
[ [Wagp F—E 4V (e, VTgl)} QO+ [ w(@y + @0+ DL, + 2000 )T, (1-96¢)
gl rgl
= [ WO T+ QT + @ Ty + ol Ty + 03 T )dU + [ W dO
r, Q,
s820e2 AEVT,,) |+ Vol vl 12 d 1-96
I[wsgp F—=L 4V (s, ng)J [ W@l + @5+ 02, + 207 )T, pdr (1-96)
Q, T,
= [ W@ T+ FTy + p Ty + O Ty + O T, )T + [ wH pd©
T, Q,

©DHI | www.mikepoweredbydhi.com
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oT

g g91g3 . g W, 20, 20

| [wsgp =LV (e VTg3)JdQ+ [ w@l +on + o2, + 20
Q,; r

ggl)

g3

_ 2U
= [ WO T, T, + Doy Ty + W Ty + D Typ)dl + [ wH,3dQ2

rgS Qg3

orT,

g 8 g4 g 2U 2U 2U 2U
I [wsgp c 7+VW.(sgk VTg4)}dQ+ Iw(q)gs +q)ﬁ)g+ d)gg2+2d)ggl)Tg4dl“
Qg4 Fg4
= jw(cb Tyt @ Tyy + @2 Ty + s Ty + D20 Ty )l + [ wH a0

L4 Qg4

1.8.1.2 1U exchanger vant. We obtain

For the 1U exchanger configuration the equations
(1-96b), (1-96d), (1-96g) and (1-96h) become irrele-

0T, ,
J’[wp’c’(a—;‘+u~VT“)+vW-(L’.VTil)JdgH [ wooj, Tydr = [ w7, dr + [ wh, do

Qil 1—‘il 1-il Qil

1)+ Vo (L VI |dQt [ wdp T, dl = [ whpTodr+ [ wi, do
Q, T, T Q

ol ol

oT
g g’ gl . g 1u
j[wggp =L+ V- (g, VTgl)JdQ+ [ wy +op+ o )T,

Qg |

= [ W@ T+ T+ D T )dT + [ wH,d
Iy Qg

oT
| [wegp cf’-f—+w (e A°VT 2)de2+ [w@y o+

gg)
g2 rgZ
= [ W@ T+ T, + D T )dT+ [ wHdO
T, Q,,

(1-96g)

(1-96h)

(1-97a)

(1-97b)

(1-97¢)

(1-97d)



are more specific. They read for the CXA type
1.8.1.3 CXA exchanger

The formulations for the coaxial pipe configurations

o,
j[wprcr(a—;l+u~VTil)+Vw~(Lr-VTi1)}dQ+ [ w7, ar (1-98a)
Qil 1—‘il

CXA CXA
= [ W@, Ty + 07T, Hdl + [ wH, dQ

1—‘il Qil
or
pr’c’( 8:1+u.vrol)+vW.(L’.vrol)]dQ+ [ w7, ar (1-98b)

Q r

ol ol

CXA
= [wo T, dr + [ wH,,dQ
T, Q

ol

CXA

or
g g 7| g CXA
| [wagp =LV (e VTgl)}dQ+ [ w@g* + oM T, ar (1-98¢)
Q, r,
CXA CXA
= [ w(@ T+ 0 T dr+ [ wH,dO

Fer Qg

1.8.1.4 CXC exchanger
The formulations for the CXC type read
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oT;, CXC
[ [Wprcr(a—;+u-VTiJ +Vw~(Lr~VTil)}dQ+ [ woy T, ar (1-99a)
Qil l—‘il
CXC
= [ W@y, )dr + [ wH,; d2
1—‘il Qil
r 0Ty r J CXC | (CXC\ o
pr (2w, )tV @ .vrnl)J O+ [ W@ +0; )T, (1-99b)
Qol 1-al
CXC CXC
= [ W@y Ty + @ T,)d0+ [ wH, dO
l—‘ol Qol
[ [we gcg%-Fvw-(S AEVT, ) |dQ + jw(cpcxc+q>CXC)T dr (1-99¢)
<P ot g gl gs fog /7 gl

Q,

CXC CXC
= [ W@ T D
r

gl

Q

‘gl

1.8.2 Spatial discretization

Using the Galerkin-based finite element method
(FEM), where the test function w becomes identical to

O-T+D-T
0,0 0 0 0 0 0 0f |z K 0R,
00, 0 0 0 0 0 0 . 0 K, 0
0 0 0,0 0 0 0 0 Tox R, 0 K,
00 00,0 0 0 0 |Tal |0 0 0
00 0 00,0 0 0f|f,| R 0 0
000 0 0 00,0 0 T, 0 R 0
000 0 0 0 0 05 0 ; 0 0 R,
[0 0 0 0 0 0 0 Oy |¥ [0 0 0

T,

g4

Ty

T,)dr + [ wH, dQ

the trial space N, equations (1-96a) to (1-99¢c) lead to
the following generalized matrix system

=F

ok 0 0o o] [T Fin

0o 0 R 0 of |Tn Fiz

00 0 R, 0 |Tor Fo,

K, 0 0 0 R, |Torf _ Fo, (1-100)
0 K, R,R, R,y |Ta Foi—R;- T,

0 Ry, Ky, Ry Ry| |To| |Fp-R,T,

0 R, Ry K, Ry Ty, Fos =R - T,

R, Ry Ry Ry K, |T,| |Fu-R-T,



with Fy =Y [ #,Nd

T e o
0,=% [ p'dNNaQ i
T
¢ Qn Fp=3% I HipN dQ
_ I ¢ sz
0,=% | o'¢NNao (1-101a) ,
¢ Q0 Fnl = Z _[ HolN dQ
T e e
0, =3 [ep’NNaQ (i=1,...G) Qo1
g1 4 T
e q, F, =3 [ H,NdQ
e Qe
K., =C.—R.—R. 2 (1-101e)
il i i io T
Ky, = C;—R, Fo =3 J. Hy N dQ
e QE
K, =C-R -R, g
ol o o io (1-101b) F _ . NTdQ
K02 = Co_Ro g2 Z j g2
_ e Qf
K, = G;—R,—2R, —R,, R, o2
T
K,, = G,—R,~2R, —R,,—R, Fy =Y [ H N dQ
ror T r T ¢ Q:a
Ci:ZJ(pCWNVNJrL-VNVN)dQ . —ZIHNTdQ
e Qf . g4 g4
e (1-101¢) ¢ o

g4

, T , T
¢, =Y [ ('du-NVN+L-VN VN)iQ

€ Q

and

01,02

1

T
G =Y j (e, MVN VN)dQ
e Qe
e ; (1-101d)
G, =Y j (e VN VN)dQ

e e
Qg3,g4
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(1-101f)

2U 1U CXA CXC
R - [ of N Nar -5 [N Nar -5 [ o N Nar 0
¢ T e er
R, -5 I o N'Ndr -5 J' @ N'Ndr 0 -5 J' O N"Ndr
¢ er, e,
R;, 0 0 72 J‘ (DfC/XANTNdr 7ZJ‘®;XCNTNdr
er er
Ry -S> [ e N Nar -3 [ @y /N Nar 0 0
€ T ¢ Tom
fao > [ aguNNar 0 0 0
€ T
R, -5 J' o2 N'Ndr -5 J' oL N'Nar —zjq)g(ANrNdr -5 J' o N"Ndr
¢ Togum ¢ T ¢ T ¢ o

The symbolic Q) ,,,T; ;, denotes the domain and
surface of pipe(s)-in, Q°, ,,.T¢, ,, for pipe(s)-out and
Q;, F;. (i=1,...,G) for the grout zones of finite ele-
ment e . Analytical (explicit) integration of the matri-
ces of (1-101a) to (1-101f) is given in Appendix A.

1.8.3 Streamline upwind scheme

If the advective part in the heat transport equations
of the BHE pipes becomes dominant, wiggles in the
solutions can occur and the spatial discretization with
the standard methods (Galerkin-FEM) is insufficient. A
common technique is the streamline upwind scheme,
which introduces a balancing diffusivity to produce sta-
bilized wiggle-free (smooth) solutions!'. It is equiva-

lent to modifying the thermal dispersion tensor (1-11)
for the refrigerant in the 1D pipes according to

L = [V +p'c (a, +af" ™) ull1r (1-102)
with a numerical thermo-dispersivity o) = = kL/2
derived for linear finite elements, where L corresponds
to the length of the 1D pipe element and « e (0, 1) rep-
resents an upwind parameter which can be taken with
k = 0 for the Galerkin-FEM and with « = 1 for the
streamline upwind scheme.



1.8.4 Temporal discretization 0=0 explicit scheme
0=1/2 trapezoid rule (Crank-Nicolson scheme 1-103
1.8.4.1 6Gmethod o1 P ( ) (1-103)

Introducing a weighting coefficient (0<6<1),
common time stepping schemes result if choosing 6 in The 6-method results the following matrix system

implicit scheme

an appropriate manner, viz., from
o +1_ (0 1
(A_tn+De)Tn ‘(Atn’D(lfe))Tﬂ(Fﬂ 0+F'(1-0)) (1-104a)
with

©DHI | www.mikepoweredbydhi.com
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o
TotK0 0 R0 0 R,6 0 0 0
o Yiko o 0 0 RO 0 0 T.1""!
At i2 i il
[ T.
R,,0 0 ° LK, 0 0 0 0 R,0 0 2
At, T
ol
1)
0 0 0 FirKa0 0 0 0 R0 T,
o T
RO 0 0 0 Aitwlqge R0 R0 R0 gl
n ng
0 RO 0 0 R0 22ik0 R0 R0
i 22 ig 2l 2l Tg3
)
0 0 R,0 0 R0 R0 ﬁ+K()g6 R,0 Tes
0.4
0 0 0 RO R0 " R0 ZE+K,0
o,
i Ki(1-0) 0 —R,,(1-0) 0 —R,(1-6) 0 0 0
or
0 - Ka(1-9) 0 0 0 ~R,(1-0) 0 0
0(:
“R,,(1-6) 0 K (1-0) 0 0 0 “R,(1-90) 0
Ou
0 0 0 2 K,,(1-0) 0 0 0 “R,(1-0)
R(1-0 0 0 0 %% _k 1_6) _r,(1-0 R, (1-6 R, (1-6
R(1-0) e K(1-0) Ro(1-0) Ry (1-0)  —Ry(1-0)
0.
0 “R,(1-0) 0 0 Ryp(1-0) 2K, (1-0) —R,(1-0) Ry, (1-0)
0 0 R,(1-0 0 R, (1-0 R,(-0) 22k (1_6) _R(1-0
“R,(1-0) R(1-0) R (1-0) TE-K,(1-0) —Ryx(1-0)
0 0 0 oy Qs 0
0 0 0 R(1-0)  Ry(1-0)  R,(1-0)  —R(1-0) £-K,(1-0)
n+1 n n+1
F; F 0
F; Fj, 0
Fol F{)l 0
F F 0
9 02 +(179) 02 “R.T
Fgl Fgl s s
R.-T
Fy, F,, s A
R, -T,
Fg3 Fg3 s s
R.-T
Fg, F,, s A

(1-104b)



where the subscript n denotes the time plane and Az, is
a variable time step length.

1.8.4.2 Predictor-corrector method

For the fully implicit backward Euler (BE) scheme

K</g

0
+1
0 Til !
0 TiZ
Tn]
R, T,
T
R, gl
T,
R, Tg3
R, Tes
0y
oar, o)
+1
F" 0
Fi 0
F{)l 0
FDZ 0
Fg1 B R: : T:
F, R T,
Fg3 R: : T:
F,, R,-T,

0 +1 T 1 . 1+ 1
(-———+DT’ =0|=—+(z-1)T"|+F
0Az, 0At, \0O
o, +K, 0 R 0 R 0 0
GAI,, il io i
o g 0 0 0 R 0
0Ar, i i
R 9, g 0 0 0 R
io At” ol 0
0 0 o 2.g 0 0 0
0ar, o2
0,
R, 0 0 0 G_A&T,f . Ro R,
0,
0 R, 0 0 Ry GEotK, R,
03
0 0 R, 0 R, o ﬁt—”
0 0 0 R, R, R, R
o 00 0 0 0 0 0-
At )
o [ T,
0 -0 0 0 0 00 T,)" "
! 0 T. TiZ
0 0 <0 0 0 0 0 2 .
n T, ol
00 0% 9 0 0 0
_ At 1 )T +(l_1) T,
0, OAL | T 0 ;
00 0 0 Kz;—' 0 0 0 " el Ty
n 0 ng T
2 g2
00 0 0 0 =0 0 T
At, g3 T
T &3
00 0 0 0 0 20 g4 ;
At, L T,
0
00 0 0 0 0 o0 &
L At,

with 0 e (%, 1) for the TR and BE scheme, respec- tively.
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with a first-order accuracy and the semi-implicit non-
dissipative trapezoid rule (TR) one yields from (1-100)

(1-105a)

(1-105b)

n+1
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1.9 Analytical Solution of the
Local Problem

1.9.1 Local steady-state condition
with given temperature at
borehole wall

The present analytical solution is only valid for
local steady-state heat transport and given temperature
T, = Tz 1) at borehole wall. It was firstly derived by
Eskllson and Claesson!? for heat transfer between two
pipes and the borehole wall. We extend the analytical
method to CXA, CXC, 1U and 2U configurations of
BHE. The local steady-state heat balance equations for
fluid in pipe-in and pipe-out read

iy T TY T —T
-A'pcu(V,T;) = 3 3
Rl R12
T o7 r (1-106)
Aip*’cru(vaUl) _ ol - L ol - il
RZ Rl2

which have to be solved for the pipe(s)-in temperature
T;,(z) and pipe(s)-out temperature 7T,,(z). In (1-106)
the vertical heat conductivity in the pipes is neglected.
It is further assumed that the inner cross-sectional area
of pipe-in and pipe-out is equal 4’ = 4; = 4. The
local steady-state condition limits the apphcatlon of (1-

106) to a time scale larger than'?

steady _ SH2 sp/c/-i-(lfs)pc }
1> Lt 4 ( 8}]4_(1 8)7\, (1-107)

The time for the refrigerant to circulate through the
borehole is 24'L/Q,. Accordingly, equations (1-106)
can only describe transient input variations of inlet
temperature and pumping rate on a time scale larger
than!?

£> ey +A’2QL (1-108)

hmlt
”

The specific thermal flux ¢(z, ) exchanging heat of
the borehole with the adjacent soil s is given from (1-
106) according to

T-T7T., T -T

(p(Z, t) _ s il 48 ol (1_109)
A A
Rl RZ

1.9.2 Eskilson and Claesson’s analyti-
cal BHE solution

The coupled equations (1-106) can be solved by
using Laplace transforms'?. It yields

T3\ (2, 1) = T;1(0, )f1(2) + T, (0, t)f2(2)+fT(i 0f,(z=8)dg

(0<z<I) (1-110)

T,1(z0) = =T;1(0, 0fy(2) + T, (0, 0)f3(2) - JT(ﬁ 0f5(z-8)dg



The functions f,, f5, ..., f5 are given by the expressions

£,(z) = e [cosh(yz) — Bsinh(yz)]

£,(z) = eﬁz%smh(yz)

£,(2) = e [cosh(yz) + Ssinh(y2)] (1-111)

faz) = eﬁz[ﬁlcosh(yz) - (8[31 + BZBlz) sinh(yz)}

£5(2) = " Bycosh(yz) + (3B, +

where

1 1
By = ———— By = ——
RlAAlprcru RgAlprcru

2
+
y = \/(—El*—%)—ﬂ%z(ﬁﬁﬁz)

The following boundary conditions are applied

Tj](oa 1) = T,‘(t)
_ _ (1-113)
T, (L,t) = T, (L, 1)

where T(r) represents the inlet temperature. Using (1-
113) in (1-111) and (1-112) the outlet temperature
T (1) is given as

T,(t) = T,(0,¢) (1-114)
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Bio=—"7— p=

(
= - +
5 y BlZ 2

Y

[31512) sinh(yz)}

1 B, — B
A i Tr 2
Ri,Apcu
(1-112)

ﬁf"Bz)

1.9.3 Solution for 1U and 2U configu-
rations

It is assumed that the pipes are arranged symmetri-
cally within the borehole. Accordingly, there is
Ry = R] (1-115)
so that
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1

By =B = ——
RIAAlp’cru
1
Bir = T,
R 2A pcu
(1-116)
B=0

Y= «/B?"_ZBIZBI

1
8 = ;(Bu*’f’l)

Hence, (1-111) simplifies

f1(z) = cosh(yz) —&sinh(yz)

fH(z) = 9;lzsinh(yz)

f4(2) = cosh(yz) + 8sinh(yz) (1-117)

QB”) sinh(yz)

Py 5 12) sinh(yz)

fu(2) = Bycosh(yz) - (8p, +

f5(2) = Bacosh(rz) + (5B, +

In using (1-113) the equations (1-110) can be equalized
at z = L and solved for the outlet temperature 7,(7),
viz.,

AD+HD)
T () = A e
A = DD

? (& DL &) +/5(L-€)]
0

(1-118)

f(L)~fo(L) “

With known inlet temperature 7,(¢) from the boundary
condition (1-113) and outlet temperature 7, from (1-

118) the temperature distributions 7, and 7, as a
function of z and ¢ are obtained after evaluating the
integrals in (1-110). It yields"

Ti(z, 1) = T{()f\(2) + T (D)f(2) + fTs(i, Df,(z-8)dg
’ (1-119)

To(z0) = —Ty(O)f(z) + TO(I)J%(Z)*J‘TS(&, 0fs(z-8)dg
0

The integrals in (1-119) are performed elementwise,
where the solid temperature T, at the borehole wall is
numerically approximated as a linear function from the
nodal finite element solution at time ¢. For example

[7.8 0f -8y (1-120)
0
. Zi(zl,r);mzz, D (o2

ee (zT,zZ)Sz

where z{,z; represent the vertical coordinates of the
lower and upper nodes, respectively, of element e.

The temperature distributions for the grout zones
are derived from horizontal steady-state heat flow bal-
ances at the grout points, where the surface integral

D The integrals of functions f,(z—¢) and f5(z—&) result for U
and 2U configurations

b
Fyte.a6) = [z~ 015 = ~Ssinn(ue- o))+ (4 + 22 )

cosh(y(z—

ﬁJrB [312)

b
Fy(z,a,b) = J‘fs(zfé)d&‘ = 7%sinh(y(z F;))\ 7( cosh(y(z—

9)

€))



J'q”g,.a’r =0 (i=1,..,6) applied to (1-10e), (1-10f), (1-
10g) and (1-10h) for the 2U configuration and (1-12c)
and (1-12d) for the 1U configuration, respectively. For
instance, it gives for the 11U configuration
J'q”gldr = (Ty ~T)/Ry, + (T~ Ty))/Ryjg + (Tgy —~ Tgp)/Ryg = 0
and

1U 1U U
J.angZdl- = (Tg27Ts)/Rgs +(Tg27T[l)/R/bg+(Tg27Tg1)/Rgg =0.

Accordingly, the temperature distribution for the
grout zones T, (z, 1) and Tyy(z,1) can be derived for
the 1U configuration

Ty(z, t)+T01(Z, t)+ Ty(z, t)+T,»1(Z, 1) 2[R
21U 21U U 21U Uilgg [Meg
_ gs fog gs fig
Tgl(z, ) = 5
(Rgg) uy—1 (1-121)
T .(z,t) T (z,t) Tzt
roeny - [0, TnG0 TGO 1
g R'U RIU U Ju,
gg fog gs
with
1 1
U = —— A — (1-122)
Ry Ry Ry
fig s gg
The grout distributions for 2U configurations give
{ZTS(Z, 1) 2T, (z1) (2T5(z, 1) 2T;(z z)] }
+ + + Urv v
2U 2U 2U 2U 2
R R R R
_ _ gs fog gs fig
Tgl(z5 t) - ng(za t) - 22
Vi, —1 (1-123)

Tg3(z, 1) = Tg4(z, 1) = [

v 20
Rfog
with
2 2 1
Uy = FJ‘FRTJ-F‘—}
e e (1-124)
R2U1R2U2

= — 88! 882
v
2U 2U
2 (Rggl + RggZ)
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T, (2 1) . 2T,,(z,t) . 2T (z, r)] 1

20
R gs

Uy

. 1U 1U 2U 20
assuming Ryg = Ry and Ry = Ry

The thermal resistances RlA and RIA2 are given by
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Hence, (1-111) simplifies

RA _ Rﬁ[;-*'RlU
1U 10,2 10,2 i . . 4 e
A (u (RigRee) — (Ryip) for 1U pipes  (1-125) f1(z) = e""[cosh(yz) — Ssinh(yz)]
. U Pio_.
Rgg fz(z) = eBZTsmh(yz)
RV, p?U f3(2) = eBZ[cosh(yz)+8sinh(yz)] (1-129)
A _ Tfig gs
R, = z .
! 2 ) fa(z) = P [Bcosh(yz) — 3B sinh(yz)]
U 2 for 2U pipes (1-126) B.p
R1A2 - M(uzv_l) f5(2) = s 12smh(yz)
4 727 ¥

The outlet temperature 7, (¢) is determined by
1.9.4 Solution for CXA configuration

. . . . . FiL)+/f5(L)
For coaxial BHE pipes with annular inlet there is T,() = T()—=———=+ (1-130)
S (L) =1r(L)
A _ _
Ry = (1-127) 'L[ W& DI (L=8) +f5(L-&)] g
so that 0 (L) =f,5(L)
1 N
B, = . and the temperature distributions 7,,(z, ) and T,,(z, t)
Ridpcu are obtained from the integral expressions
B, =0
1
Bio = —5—
R?zAlprcru
. B (1-128)
2
B? 2 The integrals of functions f,(z - &) and f5(z - &) result for the
VST + BB, CXA configuration
. B, Fy(z.a,b) = f.n(z—z;)dz; = ZB ‘Bzexp(ﬁ(z—zs))ﬁ [(8 +B)cosh(y(z - €))L -
— a Y -
5= &(B EN 2)

Fy(z,a,b) = j‘fs(z Bya - P

el S en(h -~ [Esmh(v(z—a»ﬁ—coshc



T \(z,0) = T()f{(2) + T (D)f5(2) + '[TS(& 0f,(z = €)dg
’ (1-131)

T,1(z 1) = =T{(0f5(2) + T,(Df3(2) *ITS(@ 0fs(z=&)dg
0

Assuming a horizontal steady-state heat flow balance
with [[q" r¢190 = 0 applied to (1-13c), the temperature

distribution for the grout zone T 21(2: 1) yields
CXA
Ty (z.0) = e [Tz 1) - (1-132)
fig gs

Tl.l(z, Hl+ Til(z’ )

The thermal resistances R? and sz are given by

A CXA CXA

RS = REXA L RO

b e Ve (1-133)
A _ . CXA
R12 - ij

1.9.5 Solution for CXC configuration

For coaxial BHE pipes with centred inlet there is

R = (1-134)
so that
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B1 =0
1
By = ——
RgAlprcru
1
Bip =
N
R12A1p cu
1-135)
B, ¢
B =

<
Il
|
B
+
=
S
=
(8]

-

Hence, (1-111) simplifies
£,(z) = € [cosh(yz) — Ssinh(yz)]

fy(z) = eﬁz%sinh(yz)

fy(z) = P [cosh(yz) + sinh(yz)] (1-136)
i) = -HE2e 25 Zsinh(y2)

fs(z) = eﬁz[ﬁzcosh(yz) + SBZSinh(yz)]
The outlet temperature 7,(7) is determined by

) = TWA ),
f5(L)~f>(L)
?TS@, OIf (L&) +/f5(L-8)]
0 f5(L)~f,(L)

(1-137)

ds
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and the temperature distributions 7,,(z, ¢) and T _,(z, ¢)
are obtained from the integral expressions

T \(z, 1) = T(0)f((2) + T ()f5(2) + ITS(@ 0f,(z—&)dg
‘ (1-138)

T,1(z0) = = Ty(0)f(2) + T,(Df3(2) —ITS(Q 0fs(z-8)dg
0

Assuming a horizontal steady-state heat flow balance
with gqn rq1dl =0 applied to (1-14c), the temperature
distribution for the grout zone Tyy(z,1) yields

CXC
To(20) =~z ezl Tz 0 - (1-139)
fig gs

T,/(z,)]+T,(z1)

The thermal resistances Rf and R?Z are given by

A CXC CXC
RS = RS g

S (1-140)
A . CXC
RIZ - Rff

3 The integrals of functions f,(z - &) and f5(z - &) result for the
CXC configuration
BZBIZ

1.10 Implementation

1.10.1 Numerical BHE solution

The aquifer system is discretized in FEFLOW by
3D prismatic finite elements, where the BHE systems
are modeled by vertical boreholes. Each borehole is
discretized by a number of K nodes, which are linked to
the 1D pipe elements as exemplified in Fig. 1.6 for a
2U exchanger borehole. The K nodes represent inner
boundary nodes of the soil 5. The Cauchy-type BC (1-
9) requires the solution of the grout temperatures
T, (i=1,..,G) at the K nodes, which is obtained by
solving the local matrix system consisting of K*DOF
equations (DOF = 8 for 2U DOF = 4 for 1U and DOF =
3 for CXA and CXC), ¢f. Appendix B.

For the soil temperatures T, - Ts(t"+ ') the spa-
tio-temporal finite element discretization leads to a
matrix system of the following form:

+ n+ G n
(A1 (T3 = (B = SR AT, (1-141)

i=1

with

[4,] = [4*]-G[R,] (1-142)

Fy(z.a,b) = ]fuz—&)da = BT-zexpm(z—&mﬁ [gsmhw—&))|ﬁ—cosh<v(z—é))\ﬂ
a -7

b
Fs(z,a,b) = J.f:s(z’i)dé - b exp(B(z—&))[2 [(B—v8)cosh(y(z— &), + (5B —y)sinh(y(z ~&))[.]

7B



where [4 *] is the soil matrix without the soil-grout
transfer condition. Denoting by N the number of soil s
nodes, the matrix has the space [4 ] € RV In (1-

RHS results from the heat transfer boundary condition
(1-9), which is unknown at first. The overall matrix
equation system can be written as

141) the grout temperatures 7,.(i=1,...,G) on the

All 0 Rio
0 A, 0
io 0 Aol
0 0 0
R, 0 0
0 R, 0
0 0 R,
0 0 0

R 0 0 o] (Tt B, n+l
o R, 0 o |Ta B
0o 0o R, of |Ta B,
0 0 0 R, [T _ B,, (1-143)
A;g Ry Ry Ry | T B, —R T
Ry, Ajg Ry Ryy| | Ty By, -R - T
Ry Ry Ayg Rys| | Ty By —R - T
Roi Ry Ryp Ae| (T, Byy—R;- T,

\
I

1D-2U element

Figure 1.6 Discretized 2U exchanger borehole.
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Both matrix systems (1-141) and can be combined

_Azl 0 Rio 0
0 A, 0 0
Rzu 0 Aol 0
0 0 0 A4,
R, 0 0 0
0 R, 0 0
0 0 R, 0
0 0 0 R,
0O 0 0 O
and expressed in a compact form

Apipe

T

Rps

where

Rps

A

N

{T pipe
TS

}n+1

ST O o o o

©

® =
x> x ®

=
N

n+1

ntl

(1-144)

(1-145)
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~

® o o
o o o

= o
3
S

c o® o

o
=

<

A =

PIPE(K*DOF x K*DOF)

o3
N

o9

o3

[
X A XX
=

T
S
o
o3
o
©
S
o~

[

o3

o3

o3
[N

o o o ® o
x B on X
AR R X

N NN
N
<

T

°

N
o

+1 _
pipeeor)

Di"*]

T, (1-146)

f=}

oS © O

PSkpOF < 1)

~ X XX

T
PSq xkpoF)

=foo0or R R R
- c me N

For the solution of the complete equation system (1-
145) a static condensation strategy (also known as sub-
structuring technique? frequently used in finite-ele-
ment structural engineering) is preferred, where the Ityields
internal pipe variables Igi;el can be eliminated from

(1-145). The first row of the matrix system (1-145) I;;el = A;ilpe . (B;',i;e1 -R, T:'H) (1-148)
reads

+1 +1 n+1
Apipc ’ Tgipc +Rps ’ T:l - Bpipc (1-147)
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Taking the second row of (1-145) the temperature
vector of the pipe Tﬁi;el can be eliminated by using (1-
148). It finally gives a reduced equation system of the
following form

T -1 n+ 1 n+1
[A,—R, - (Ao R O1-T, = Bl - (1-149)
T -1 n+1
Rps ’ (Apipc ’ Bpipc )
or

+1 n+l1 n+1
(AsiAps)'T;l :Bs 7Bps
T -1
Aps = Rps . (Apipe . Rps) (1-150)
n+1 T -1 n+1
Bps = Rps ( pipe * pipe )

for solving only the soil temperature 7, “! at the new
time stage n+1, where the modified matrix
(A,-A,) = (A*-GR -A,) represents the Schur
complement’. Note that Ao is a local
K*DOF x K*DOF matrix, which is commonly not large
K«N (K <1000, DOF = 8 for 2U, DOF = 4 for 1U
and DOF = 3 for CXA and CXC). Accordingly, the

. -1
Inverse Apipe . ' !
Gaussian matrix solution for each pipe. If T

+1 .
is
solved from (1-149) the internal temperatures 7', -

can be easily computed by a direct
1
1
pipe 10T
each exchanger can be simply recomputed from (1-
1438).

Using (1-150) and (1-148) a direct and non-sequen-
tial solution of complete temperature field for the soil
and the pipe, 7" "', Tgigel , appears possible. Basically,
there is no need for an iterative solution of the coupled
system (1-144), which is superior to the strictly itera-
tive sequential strategy as used by Al-Khoury et al.'”.
However, the condensed matrix system (1-150) in form
of the Schur complement (4,-4,) has been shown
frequently very stiff, particularly when the heat transfer
coefficients dominate above thermal conduction and
advection of the global system. In such cases numerical
roundoff errors can distort the solution and balance
errors occur in long-term or steady-state simulations.
To prevent these harmful effects the solution of the
severely ill-conditioned matrix system (1-150) is com-
bined with an iterative correction strategy as follows:

+1),1 n+1 n+1
A.-A4 ) T -B""'_B
starting solution T = 0: Sﬂ)ps s 1 +1S ps o
n ,T o n n ,T
Tf)ipe = Apipe - (Bpipe R, TE‘ )
(1-151)
ntl),(t+1) _ potl T n+tl),t
. . . (As* - GRS) ’ T(s = B _Rps ’ T;ipe
iterative correction T + 1: P X . i)
n , (T - n n ) (T
T;ipc - Apipc ’ (Bpipc 7Rps' T§ )

were 1 corresponds to an iteration counter. At each
time level we start with the Schur complement solu-
tion. It results the soil temperature 7" """ and the

pipe temperature 7@’&; DT at initial state © = 0. With

known Tf)'i’pt Y% the global soil matrix system (second
row of matrix system (1-145)) is solved to find the new



iterate for temperatures of soil Iﬁ’”l)’(”l) and
accordingly of pipe 74" """ The iteration  in (1-

151) is repeated until a satisfactory convergence is
achieved, such as

+1),(t+1 +1),
g s aas
where |.. IIL can be used as a RMS (p =2) or maxi-

mum (p =) error norm® and § is a user-specified
dimensionless error tolerance. Usually, only one itera-
tion is required in transient simulations if the time step
length A¢, is chosen appropriately small. This is effec-
tively controlled by using the adaptive time stepping
strategy combined with predictor-corrector schemes as
described above.

1.10.2 Analytical BHE solution

n+tl

For the soil temperatures T:Z o T (r ) the spa-
tio-temporal finite element discretization is taken in the
following form:

n+1 n+1

([A*]+ [Rgyp]) - { T} = {B} (1-153)

where with (1-109) a BHE-related diagonal resistance
matrix

| 1j
Lo Llar (1-154)
(RA A

and a source/sink term on the RHS

T;_/Hrl Tn+l
Byyp(T) ) = j(%+"—gjdz (1-155)

1 2

appear. The temperature distributions for pipe(s)-in
T;llﬂ and pipe(s)-out 7", ' represent complex analyti-
cal expressions as given in Chapter 1.9 (see equations
(1-119), (1-131), (1-138)). Since they are again depen-
dent on the soil temperature

I?l+l _ T,:ll+l(7?+l)

+1 +1, ,n+1 (1-156)
Tgl =Tgl (T:vl )

B 7! the matrix system (1-153) is solved via an iterative pro-
{Bgue(T, )}
‘ cedure according to
. . o (n+1),1 _ n+1
starting solution T = 0: ([A\,*] +RBHE) . {TS} = { S} + {BBHE(Tn)}
’ (1-157)
iteration t + 1: ([A*]+ Rgyp) - {TS}(n+1),(r+ n _ {Bs}n+1 n {BBHE(T(’H 1), r )

The iterations with the current time level (n+1) are
stopped if

+1),
_ 7,§I1 T

1,<d (1-158)
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1.11 Important Note on Mesh-
ing BHE Nodes

In using the numerical (Al-Khoury ef al.’s"?) or the
analytical (Eskilson and Claesson’s'?) solution strate-
gies a BHE is reduced to an internal boundary condi-
tion occupied at a single node in a horizontal view on
the 3D finite element mesh of the global problem. It
appears similar to a well node, where a pumping well
with a rate 0, in the borehole is modeled at a singular
node via a well function applied to the sink/source term

0O of (1-1):
0 = 0,(x)8(x—x;) (1-159)

where 3( ) is the Dirac delta function and x; are the
well coordinates of the well node i .

Such types of nodal singularities in a mesh require
specific considerations due to the following reasons. If
inserting O, at a singular node i the resulting head
value %, in a flow simulation don’t usually represent
the head exactly at the physical borehole radius r,;
instead, the actually computed head #; at the node i is
to be deemed on a different radius, which is called vir-
tual radius r;,,, ; in regional models often larger than
the real physical radius r, . It can be shown that the vir-
tual radius r, ., is primarily dependent on the mesh
discretization around the node i, represented by a
nodal distance A (cf. Fig. 1.7). Accordingly, it has to be
the goal in present modeling to design the mesh around
those singular well nodes i in such a way that the vir-
tual radius r ;. meets at best the physical radius r,
of the well. In doing this, we introduce the following
two methods for tuning the mesh at BHE nodes.

1.11.1 Direct estimation of nodal dis-
tance A (method 1)

It follows the ideas by Nillert'> developed for 2D
horizontal regular meshes applied to wells in ground-
water flow. Extending to conductive heat transport we
find the following relationships, which are similar to
potential flow. In a spatial discretization the conductive
heat flux H, at the singular node i can be expressed by

Hi = SCD(TA - Tvirtual)

(1-160)
where T, is the temperature at the distance A, T, .
is the temperature at the virtual radius r ., , which
must not be the physical BHE radius r,, @ is the heat
transfer coefficient and 9 is a shape factor determined
by the BHE-node surrounding mesh. For regular 2D

meshes Nillert'® derived:

9 = ntan@ (1-161)

where n = (4,5,6,...) denotes the number of sur-
rounding nodes, where n = 6 is typical for triangular
horizontal meshes (see Fig. 1.7).

In contrast to the approximate solution (1-160), for
a radially symmetric BHE we find the analytical (heat)
well formula®

Ty T,
H™ = an—A———AV-‘F—“il (1-162)
In(—2—)

"Virtual

Equating (1-162) and (1-160) it yields



Figure 1.7 Spatial discretization (n = 6) around a BHE
‘well” node.

o = 2% (1-163)

virtual
T
ntan (;)

Equation (1-163) can be used to determine the required
nodal distance A spacing from the BHE node if forcing
the virtual radius to the borehole radius r ry . It
obtains for typical horizontal meshes

A = exp(a) r

virtual

481 for n =4
A=ar, a=146.13 forn=206 (1-164)
6.66 for n = 8

Relation (1-164) represents an direct and effective
estimation for an optimal mesh refinement around a
BHE node. It will be shown further below that those
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meshes which are designed by using criterion (1-164)
can give optimal accuracy, even better than spatial dis-
cretizations over-refined A<r, or coarse A>ar,
around BHE nodes.

1.11.2 Iterative determination of
nodal distance A (method 2)

While method 1 is derived for ideal regular meshes,
this method 2 is applicable on the actual discretization.
It has been proposed by Bauer* in using the following
iterative procedure for finding optimal nodal distances
A around BHE nodes. Using Kelvin’s line source
theory'# the temperature change AT in a distance from
the line source is given by

o0 732
AT = &;j%dﬁ
2mh g (1-165)

p = T
2@ pscs

where Q,, is the thermal power of the line source and r
represents the radial distance from the line source. For
the case at/r>>1 an approximate solution of (1-165)
is given?® (applied to SI units of parameters)

018330,

N

2
{bgm(‘i;) + 0.106;—t + 0.351} (1-166)
r

The relation (1-166) can be used to determine an
optimal nodal (horizontal) distance A via the following
iterative procedure. The computations should be sim-
ply realized on a 2D horizontal mesh, where the full 3D
problem is reduced to only one layer:
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(1) Apply a standard thermal 4th kind boundary condition
(no BHE) at the node i with an injection rate of 50 W/m.

(2) Simulate the problem for # = 50 days at given mesh hav-
ing an initial ‘averaged’ nodal distance A. For a first
guess of A the relation (1-164) can be used. It is to be
required that the outer boundaries of the global problem
are not affected by the injecting heat over the considered
time (outer boundaries are suitably distant the ‘well’ node
i).

(3) Determine AT from the (forward) numerical solution of
the reduced 2D problem at the ‘well’ node 7.

(4) Determine r from the implicit expression (1-166) with
given AT, O, 2%, o and 7.

(5) If » <7, then the adjacent nodes around the BHE have to
shifted outwards, so A increases. Otherwise, if r>r,
then the adjacent nodes have to be moved inwards, so A
decreases.

(6) Repeat the simulation over 50 days (re-initialize the solu-
tion meantime) and compare with (1-166) again. Termi-
nate the iterative loop if it meets 7~ 7, .

Both methods are beneficial to determine optimal
mesh geometry for BHE in the regional discretization.
Optimal conditions commonly exist when the nodal
distance A around the BHE node is larger than the
actual BHE radius r, because we know from (1-164)
that A should be chosen five to six times larger than
the physical borehole radius r,, which is in general a
reasonable guess. We note that if refining the mesh too
much around the BHE node, so A <r,, the solution can
become even poorer, unless the contrast for the thermal
conductivity of elements within the physical borehole
radius r, is significantly increased.

The advantage of method 2 against method 1 is that
the forward solution (step 3) is based on the actual hor-
izontal spatial discretization and accordingly AT in (1-
166) implies the accuracy from the overall horizontal
discretization, not only related to the local spacing con-

ditions around the BHE. On the other hand, the effort in
the iterative procedure of method 2 can be high, partic-
ularly if applied to arrays of BHE, and method 1 could
be sufficient under practical conditions. We note
finally, both methods assume that the heat transfer pro-
cess is dominated by a radial conduction having no (or
negligible) variation in the vertical direction.

1.12 Related FEFLOW Dialogs

1.12.1 BHE well specification
1.12.1.1 BHE ‘well’ option

A BHE represents a specific "well” boundary condi-
tion of 4th kind in heat transport similar to a multi-well
boundary condition (BC) of 4th kind in flow problems.
However, the BHE "well” boundary condition is more
complex and requires various additional data. Particu-
larly, 4th kind well boundary condition has to be
changed from the standard single well node input to the
BHE node input by using the Heat 4th Kind BC Option
Options Menu as exhibited in Fig. 1.8.

# [Heatflux  (2nd kind) [E
Transfer (3rd kind) E
[BHE @ik |

By~ = =1 =]

Time—varying function ID’s

’v Standard single well node input

4 Borehole heat exchanger (BHE) node imput

Return

Figure 1.8 Setting borehole heat exchanger node input
via FEFLOW?’s heat 4th kind BC option menu.



1.12.1.2 BHE setting

A single BHE or a series of BHE can be set at nodes
on top slice of a 3D heat (or thermohaline) transport
model. If such a node is assigned the Borehole Heat
Exchanger Setting Menu immediately appears (see Fig.
1.9), where a number of data can be specified:

* Total heat input rate 0, [J d'l] of BHE. Note that
0, implies an inlet temperature 7; [°C] (see fur-
ther below).

* Exact coordinates (X ¥ 2) [m] of BHE on top
slice.

* Pipe bottom and pipe top locations (’screen
lengths’) of BHE.

» Computational method applied to BHE: analytical
(Eskilson and Claesson’s'?) method or numerical
(Al-Khoury et al.’s"?) method.

* Type of BHE: double U-shape (2U), single U-
shape (1U) and coaxial shapes (CXA and CXC).

* Dataset identifier, where an arbitrary number of
dataset can be introduced, i.e., series of BHE can
be assigned in a 3D model, where different BHE
types and parameters mutually occur.

* Dataset parameters related to an identifier for
Borehole consisting of (1) borehole diameter D
[m], (2) pipe distance w [m], for Pipe-in consist-
ing of (3) pipe-in outer diameter d; = 277, = 2},
[m], “4) pipe in wall thickness
b, = riol —ri.l = ri 2 [m] (5) plpe in thermal

conductivity kl [Jm sk ], for Pipe-out

consisting of (6) plpe -out outer diameter
dz = 2er = 2r02 [m], (7) pipe-out wall thickness

b, = ”21 —rlol = Z v, [m], (8) p1pe out ther-

mal conductivity 7»0 = 7‘1072 [Jm' sIK! ], for

Refrigerant consisting of (9) flow discharge (total)
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0, [m3d'1], which can also be a time-dependent
function Q, = Q,(¢) if assigning a power function
via the ID’s menu as shown in Fig. 1.9, (10) volu-
metric heat capacity p’c” [10° Jm>K'], (11) ther-
mal conductivity 2" [Jm 's'K!], (12) dynamic
viscosity p” [10'3 kg m'ls'l], (13) mass density
p" [10% kg m™], for Grout consisting of (14) volu-
metric heat capacity pc® [10® Jm>K"'], and (15)
thermal conductivity A% [Jm's"'K™1].
Heat transfer coefficients or thermal resistances
in dependence on the selected computational
method (either numerical or analytical), which can
be alternatively computed from the dataset param-
eters (1) to (15) according to the analytical formu-
lae as given in Chapter 1.6 or prescribed in an
independent manner. In the prescribed mode it is
to be directly input (16) heat transfer and thermal
resistance of pipe-in to grout U [Jm'zs'lK'l],
Riq [msKJ™ ] respectively, for 2U and 1U or heat
transfer and thermal resistance of pipe-in to pipe-
out CD;XC [Jm'zs'lK'l], REXC [msKJ'l], respec-
tively, for CXC, (17) heat transfer and thermal
resistance of prpe -out to grout @, [Jm'zs'lK'l],
Ripe [msKJ ] respectively, for 2U and 1U or heat
transfer and thermal resistance of pipe-out to pipe-
in CD;XA [Jm'zs'lK'l], RC-XA [msKJ'l], respec-
tively, for CXA, (18) heat transfer and thermal
resrstance of grout to grout CD [Jm sIK 1,
1 [msKJ ] respectlvely, for 2U or <I)g;J [Jm
2 ¥K 1, R [msKJ' ], respectively, for 1U, (19)
heat transfer and thermal resistance of grout to
grout (Dz,gz [Jm'zs'lK'l], R;gz [msKJ'l], respec-
tively, only for 2U, and (20) heat transfer and ther-
mal resrstance of grout to soil D, [Jm'2s'1K'1],
s [MKJ 1, respectively.
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Figure 1.9 FEFLOW’s borehole heat exchanger setting menu: @ major BHE menu, @ optional input for time-
dependent discharge 0,(r) of refrigerant, and ® optional input of thermal resistances r, and R, from thermal
response tests.



The prescribed input mode for heat transfer coeffi-
cients and thermal resistances can be advantageous in
cases, where the user prefers to specify these coeffi-
cients by applying own rules or experimental findings.
This can be input for each coefficient. Alternatively, if
the borehole thermal resistances R, and R, are known
from thermal response tests (see Chapter 1.7) a specific
dialog supports the assignment of the heat transfer
coefficients and thermal resistances in the prescribed
input mode as depicted in Fig. 1.9. Furthermore, in the
BHE setting menu there are import and export buttons
(see Fig. 1.9) to exchange BHE data in a XML file for-
mat.

1.12.1.3 BHE inlet temperature

Giving the total heat input rate Q,, the total flow
discharge Q, and the volumetric heat capacity p'c” of
refrigerant for a BHE the difference between inlet tem-
perature T. [°C] and reference temperature Zf [°C] is

1
determined as

rork o 2 (1-167)

i o
prchr

which provides the Dirichlet-type (1st kind) boundary
condition for the temperature at pipe(s)-in on top slice
z,, 1e.,

Til(xp,yp, Z, 1) = Tiz(xp,yp,zp, t)y=T, >0 (1-168)

if the reference temperature Tf is given. In the BHE

setting menu (Fig. 1.9) the inlet temperature 7, can be
explicitly specified provided that steady-state rate con-
ditions (Q, and Q,) occur, which updates the heat

input rate 0, according to relationship (1-167) at given
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Qr,, . prcr. and Tf . Furthermqre, chgnging 0,, 0, or
p ¢ the inlet temperature 7, is modified.

1.12.2 BHE computational results

If simulation for a 3D heat (or thermohaline) trans-
port problem with incorporated BHE systems is started
a number of additional diagram windows appears in
which the computational results for each BHE are dis-
played. There are the following windows (Fig. 1.10):

* Vertical temperature profiles © for each BHE are
plotted. It covers the pipe-in, pipe-out and grout
temperature profiles at simulation time /", i.e.,
Til(xp, Vs 25 tn) S Tol(xp, Vs Zs tn) . Tg(xp, Vs Zs tn)
for vz.

* The ’average heat’ diagram window @ is used to
display the time history of pipe-out temperature
on top, i.e., Tal(xp, Yp 2 t) for v¢.

* The different BHE representations in a model are
identified automatically by an alpha-numeric or
numeric ID starting with *a’,’b’, ...,” 27’ 28, ...
In this context a selection dialog @ is available
(Fig. 1.10) to switch between the IDs of BHE.

* The iteration progress according to (1-151) or (1-
157) is watched in a specific window @. It dis-
plays the iteration history © and outlines when the
iterative procedure converges or eventually fails.
In combination with adaptive time stepping the
iterations t are performed within each time step
At,. It can happen that the iteration diverges,
however, the time step error control rejects the
current solution 7" "' and restarts with a reduced
time step.
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Figure 1.10 BHE diagrams appearing in simulation: @ vertical temperature profiles, @ time history of pipe-out
temperature on top 7,,(x,,3,,2,, 1) » @ BHE’s ID selector and @ iteration history.

1.13 Model Verification

1.13.1 Numerical

versus

analytical

solutions of BHE for steady-

state conditions and given tem-
perature at borehole wall

We directly compare the numerical and analytical
solution strategies by Al-Khoury ef al."> and Eskilson



and Claesson'? for local BHE problems under steady-
state conditions. The analytical BHE solutions are
compared to the numerical BHE results for CXA,
CXC, 1U and 2U-type BHE configurations with the
parameters as listed in Tab. 1.1 to 1.4, respectively.
Since T, is here specified as a boundary condition the

solid properties become irrelevant for the present com-
parison analysis. The heat transfer coefficients and
thermal resistances as summarized in Tab. 1.1 to 1.4
are computed from the formula given in Chapter 1.6
and 1.5, respectively.

Table 1.1 Parameters of CXA-type BHE used for analytical comparisons

Parameter Symbol Value Unit
Depth of borehole L 100 m
Borehole diameter D 10 cm
Outer diameter of pipe-in d;) 5 cm
Outer diameter of pipe-out dy, 2.4 cm
Pipe-in wall thickness by, 4 mm
Pipe-out wall thickness b, 3 mm
Thermal conductivities of pipe walls ML 0.38 Jm'sTK!
Boundary solid temperature T, 10 °C
Reference temperature ¥ 10 °C
Inlet temperature T, 80 °C
Total flow discharge of refrigerant 0, 21.86 m’ d_l
Total heat input rate 0, 6.3216 - 10° yd!
Volumetric heat capacity of refrigerant p'¢" 41312 - 10° Jm K
Thermal conductivity of refrigerant 2 0.6405 Jm s
Dynamic viscosity of refrigerant W 0.54741-10° kg m s
Mass density of refrigerant p" 0.9881 - 10° kg m>
Volumetric heat capacity of grout pScf 2.19-10° Jm K
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Table 1.1 Parameters of CXA-type BHE used for analytical comparisons (cont.)

Parameter Symbol Value Unit
Thermal conductivity of grout 28 2.3 Jm s KT
Computed heat transfer coefficients: o
pipe-in to grout @y 69.698 [J mfzsflel]
pipe-in to pipe-out @, 135.64 [J 11172 s71 K71 ]
grout to soil @, 195.74 [Im~s K ]
Computed thermal resistances: X
pipe-in to grout Ry 0.10874 [msK J_l]
pipe-in to pipe-out R, 0.13037 [msK J_l]
grout to soil Ry, 0.01626 [msKJ ]
Table 1.2 Parameters of CXC-type BHE used for analytical comparisons
Parameter Symbol Value Unit
Depth of borehole L 100 m
Borehole diameter D 10 cm
Outer diameter of pipe-in ;)\ 2.4 cm
Outer diameter of pipe-out o 5 cm
Pipe-in wall thickness by, 3 mm
Pipe-out wall thickness b, 4 mm
Thermal conductivities of pipe walls NP, 0.38 Jm s
Boundary solid temperature T, 10 °C
Reference temperature % 10 °C
Inlet temperature T, 80 °C
—1
Total flow discharge of refrigerant 0, 21.86 m’d




Table 1.2 Parameters of CXC-type BHE used for analytical comparisons (cont.)

Parameter Symbol Value Unit
Total heat input rate 0, 6.3216-10° 7d !
Volumetric heat capacity of refrigerant p'c 4.1312-10° Jm K
Thermal conductivity of refrigerant 2 0.6405 Jm s
Dynamic viscosity of refrigerant W 0.54741-10° kg m s
Mass density of refrigerant p" 0.9881 - 10° kg m>
Volumetric heat capacity of grout pfc? 2.19-10° Jm K
Thermal conductivity of grout 2 2.3 Jm s
Computed heat transfer coefficients: N
pipe-out to grout e 69.698 [J rnfzsflel]
pipe-out to pipe-in @, 135.64 [J m7257l Kfl]
grout to soil D, 195.74 [Im~s K ]
Computed thermal resistances: X
pipe-out to grout Rppe 0.10874 [msK J_l]
pipe-out to pipe-in Ry 0.13037 [msKJ ]
grout to soil Ry, 0.01626 [msKJ ]
Table 1.3 Parameters of 1U-type BHE used for analytical comparisons
Parameter Symbol Value Unit
Depth of borehole L 100 m
Borehole diameter D 13 cm
Pipe distance w 6 cm
Outer diameter of pipe-in d;) 3.2 cm
Outer diameter of pipe-out do, 3.2 cm
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Table 1.3 Parameters of 1U-type BHE used for analytical comparisons (cont.)

Parameter Symbol Value Unit
Pipe-in wall thickness by 2.9 mm
Pipe-out wall thickness by, 2.9 mm
Thermal conductivities of pipe walls VLl 0.38 Jm s
Boundary solid temperature T, 10 °C
Reference temperature % 10 °C
Inlet temperature T, 80 °C
=T
Total flow discharge of refrigerant 0, 21.86 m’d
Total heat input rate 0, 6.3216-10° 7d!
Volumetric heat capacity of refrigerant p'c” 41312 - 10° Jm K
Thermal conductivity of refrigerant A 0.6405 Jm s
Dynamic viscosity of refrigerant n 0.54741 - 10 kg m s
Mass density of refrigerant p 0.9881 - 10° kg m>
Volumetric heat capacity of grout psc? 2.19-10° Jm K
Thermal conductivity of grout 28 2.3 Jm s
Computed heat transfer coefficients: o
pipe-in to grout . 77.993 [J rnfzs lel]
pipe-out to grout Do 77.993 [J mfzsflel]
grout to grout @, 66.796 [J mfzsflel]
grout to soil Dy, 190.24 [Jm~s K ]
Computed thermal resistances: X
pipe-in to grout Ry, 0.15577 [msK J_l]
pipe-out to grout Ry 0.15577 [msKJ ]
grout to grout Ry, 0.11516 [msKJ ]
grout to soil R, 0.02574 [msKJ ]




Table 1.4 Parameters of 2U-type BHE used for analytical comparisons

Parameter Symbol Value Unit
Depth of borehole L 100 m
Borehole diameter D 13 cm
Pipe distance w 4.242 cm
Outer diameter of pipe-in d;) 3.2 cm
Outer diameter of pipe-out i, 3.2 cm
Pipe-in wall thickness by, 2.9 mm
Pipe-out wall thickness by, 2.9 mm
Thermal conductivities of pipe walls ML 0.38 Jm'sTK!
Boundary solid temperature T, 10 °C
Reference temperature ¥ 10 °C
Inlet temperature T, 80 °C
Total flow discharge of refrigerant 0, 21.86 m’ d_l
Total heat input rate 0, 6.3216 - 10° yd!
Volumetric heat capacity of refrigerant p'e 41312 - 10° Jm K
Thermal conductivity of refrigerant 2 0.6405 Jm sk
Dynamic viscosity of refrigerant W 0.54741-10° kg m s
Mass density of refrigerant p" 0.9881 - 10° kg m>
Volumetric heat capacity of grout pScf 2.19-10° Jm K
Thermal conductivity of grout AE 2.3 Jm s
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Table 1.4 Parameters of 2U-type BHE used for analytical comparisons (cont.)

Parameter Symbol Value Unit
Computed heat transfer coefficients: D
pipe-in to grout D4 83.877 [J m,zs,lK,l]
pipe-out to grout D 83.877 [J m,zs,lK,l]
grout to grout 1 D, 48489 [J m_zs_lK_l]
grout to grout 2 Dy 65.323 [J m_ s_lK_l]
grout to soil D, 143.32 [Jm™s K ]
Computed thermal resistances: .
pipe-in to grout Ry 0.14485 [msK J,l]
pipe-out to grout Rype 0.14485 [msK J,l]
grout to grout 1 Ryl 0.00031 [msK J,l]
grout to grout 2 Rygr 0.11776 [msK J_l]
grout to soil Ry, 0.06833 [msK1J ]

In the simulation models only the inner borehole is dis-
cretized, where boundary conditions for the solid tem-
perature T, are prescribed at the BHE node patch as
exhibited in Fig. 1.11. For the vertical discretization
100 layers are used, i.e., Az = 1 m.

The numerical results versus the analytical solutions in
form of steady-state vertical temperature profiles of
pipe(s)-in, pipe(s)-out and grout zone(s) are shown in
Figs. 1.12 to 1.15 for each of the CXA, CXC, 1U and
2U-type BHE configuration, respectively. As evi-
denced in all cases the agreement is nearly perfect.

Figure 1.11 Discretized inner borehole with temperature
boundary conditions of solid 7 (indicated on top slice).
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Figure 1.12 Analytical vs. numerical temperature distribu-
tion for CXA-type BHE.
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Figure 1.13 Analytical vs. numerical temperature distribu-
tion for CXC-type BHE.
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1.13.2 Analytical solution of heat
transport in a single pipe with
soil interaction

There are analytical solutions suited for the partial
problem of the 1D transient heat transport in a single
pipe with a lateral heat exchange to the surrounding
grout or soil. It can be used to compare the numerical
results for a BHE solution at a starting period when the
heat flow develops in the 1D pipe-in of a heat
exchanger interacting with the soil. It is assumed that
the heat transfer to the grout and to the soil are equal. In
such a case the governing heat transport equation reads

2
or . or 0T B
-é7+u'é';—Dg;5+(I)(T— Ts‘) =0 (1-169)

where T (= T;,) is the fluid temperature in the pipe-in,
u is the refrigerant fluid velocity, D is the thermal dif-
fusivity, ¢ is a specific heat transfer coefficient, T, is
the surrounding soil temperature taken as a reference

temperature and z is the vertical coordinate. Thermo-

dispersivity, refrigerant fluid velocity and specific heat
transfer coefficient are related to the parameters used in
the numerical modeling as follows:

oo L]
rr
pc
Qr i i 2
u = A_’l Ay = m(r) (1-170)
1
0
b - 27”’:‘1@{‘1':
i rr
jpc

Choosing the following initial and boundary conditions
according to

T(z,t) = B 5 5D

V=u 1+£—1%Q
NI u

The comparison between the numerical and analytical
solution is performed with the following data

T+ (T;- TS){exp[(u - V)Z}erfc<

T(z0) = T,
n.n =1, (1-171)
oT _
&(00, t) =0
the analytical solution' for (1-169) is given by
z—vt (u+v)z z+ vt
+ex erfc
21 vl <2J3 }
(1-172)



0, = 2.89086 - 10° [T d™']

0. = 00175 [m*d ']

¥, = 0.0131 [m]
7%, = 0.016 [m] (b=0.0029 [m] )
p'c” = 41298 10°[Jm K] (1-173)
L =2 =065 Im's'K'] (o, =0)

2 1,1
@pe = 120[0m s K] D =@, D =0
T, =T, = 10[°C]
0,

ror

pcOr

T, = +If:50[°C]

For this example the refrigerant discharge and the
heat input rate are chosen relatively low in relation to
the heat transfer. This has been done to emphasize the
heat transfer effect at early times for a pipe with a short
length. The numerical model is shown in Fig. 1.16
forming a 3D box with a horizontal extent of 20 m x 20
m and a depth of 1 m. In the central position a single
BHE is located, where the heat transfer coefficients of
pipe-in to grout and grout to soil are identical
Qpp = Oy while the heat transfer of the pipe-out is
set to zero @, = 0 to eliminate thermal interaction of
the pipe-out to the grout heated by pipe-in.

The computed temperature BHE profiles in compar-
ison to the analytical solution at + = 0.02 days are
shown in Fig. 1.17 revealing a good agreement. The
simulations have been performed for two different ver-
tical discretizations of 100 and 200 layers. Adaptive
time stepping with the AB/TR scheme and an error tol-
erance of & = 10" have been used. It is combined
with a streamline upwind scheme to stabilize the sharp
temperature front moving through the pipe in time. As
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seen in Fig. 1.17 at early times when the heat flow
through the pipe is significantly influenced by advec-
tion a sufficient vertical spatial discretization is needed
to obtain accurate solutions. At later times, however
when the heat front in the pipe disappears and the pro-
cess is dominated by heat transfer this effect declines.
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Figure 1.16 Single BHE in a 3D mesh (exag-
gerated cut view).

We have also interest in comparing the present BHE
solution and the analytical results to a fully discretized
solution, where the pipe-soil interaction is modeled in a
rigorous 3D manner without resorting to heat transfer
relationships. Fully discretized 3D models (FD3DM)
can be useful as reference solutions in applications,
where there are no analytical results. Accordingly, we
have to test how such type of 3D models can be devel-
oped and how is their accuracy compared to the pre-
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ferred BHE solution. Obviously, there is a difficulty in
FD3DM to find an appropriate geometric representa-
tion of the inner pipe and outer pipe geometries. For the
inner pipe processes 1D discrete feature elements!? are
well suited. On the other hand, the pipe walls have to
be fully discretized. Figure 1.18 shows the used 3D
mesh of a FD3DM for the single pipe-soil interaction,
where only the symmetric quarter of the domain has
been discretized. The 3D mesh consists of 628,826
pentahedral prismatic elements with 100 layers.

0.0 T T T T T T T T

04 | .

Depth z [m]

-06 - B

Analytical
-0.8 - —— BHE, 100 layers -
BHE, 200 layers

1 1 1 1
35 40 45 50
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Figure 1.17 Computed temperature profiles in compari-
son to the analytical solution for the single pipe-soil inter-
action at 1 =0.02 d.

As revealed in Fig. 1.18(b) while the vertical dis-
crete feature element of the inner pipe is represented at
a single node and the pipe wall is locally discretized, it
remains a surplus of the inner pipe domain, which is
required to exchange heat between the discrete feature
elements and the pipe wall. The domain of the inner
pipe surplus has to be assigned to special physical data

to hold the physical system correct. A sufficiently
small thermal capacity of p'c¢’ = 1 [J m73K71] has to
be used. Furthermore, the thermal conductivity L (1-5)
should be significantly large in horizontal direction,
however, very small in vertical direction. This can be
enforced by using the following numerical trick. A
very small, but non-zero vertical velocity is assigned to
the surplus domain. Then, a longitudinal thermo-dis-
persivity o, of zero and a transverse thermo-dispersiv-
ity a, of a very large amount are used in the surplus,
which mimics a high thermal anisotropic behavior of
the surplus accordin%to (1-5). In the present computa-
tion we set o, = 10 “'m and o, = 0, where the artifi-
cial vertical velocity in the surplus is set to 10 md .
In amendment to the parameters (1-173) we need ther-
mal conductivity and capacity of the pipe wall material.
The former can be recomputed from the heat transfer
coefficient ®,, according to (1-21). We find
M) = @ InGY /rl) = 0.031436 [Tm”'s 'K '] For
the thermal capacity of the pipe wall
o’ = 2.1574-10°[I m K '] is set.

The FD3DM computational results are shown in
Fig. 1.19 in comparison to the analytical solution (1-
172). The agreement is reasonable, however, difficul-
ties are revealed due to the extremely anisotropic
behavior of the inner pipe surplus, which makes the
FD3DM simulations expensive and sensitive. It indi-
cates the superior of the efficient BHE solutions to the
complex FD3DM simulations, where even a higher
accuracy could be attained on a much coarser mesh as
shown in Fig. 1.17. It is important to note that there is a
certain lag in the FD3DM solution, which does not
exist in the BHE computation (cf. Figs. 1.17 vs. 1.19).
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Figure 1.18 FD3DM for studying the single pipe-soil inter-
action: (a) 3D mesh with temperature distribution at ¢ = 0.02
d, (b) mesh magnified at the single pipe with location of ver-
tical discrete feature elements, the pipe wall and inner pipe
surplus of the domain, (c) temperature distribution on top (z =
0)ats=0.02d.
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Figure 1.19 Computed temperature profile of the FD3DM

solution in comparison to the analytical solution for the

single pipe-soil interaction at # = 0.02 d.

1.13.3 Transient BHE solution of coax-
ial pipe system

We consider a BHE coaxial pipe system of annular
inlet (CXA type) with parameters as listed in Tab. 1.5.
The aquifer domain measures 100 m x 100 m in hori-
zontal directions and 100 m in depth. The used mesh
for the BHE solution is shown in Fig. 1.20. The pipe
system is located in the centre of the domain, where the
mesh is locally refined. For the vertical discretization
100 layers are applied. Two variants of heat injections
are considered. The first one refers to a small-rate
injection with laminar flow in the coaxial pipes, which
is highly driven by thermal conduction. On the other
hand, a turbulent flow regime is studied, where advec-
tive heat transport in the pipe system is more apparent.
In both variants in the time range (0 <¢<90d) water
with a temperature of 80 °C is injected at the annular

pipe-in. At later times (90d <z<180d) the injection
temperature amounts to 10 °C.

Both the Al-Khoury et al.’s numerical BHE method
and the Eskilson and Claesson’s analytical BHE
method are applied. The 3D FEFLOW results are com-
pared to a fully discretized finite-difference solution for
an axisymmetric 2D formulation of the problem as
given by Heidemann. Heidemann has discretized the
meridional cross-section by a 72 x 113 grid. The radial
extension is taken with 50 m. His grid has been gradu-
ally spaced along the radial direction ranging from 1.5
mm up to 1 m. Heidemann used variable time steps
between 30 min and 4 hours.

The outlet temperature histories computed by the
numerical and analytical BHE methods in comparison
to Heidemann’s solution are displayed in Fig. 1.21 for
the laminar flow and in Fig. 1.23 for the turbulent flow.
The results are in a reasonable agreement. For the tur-
bulent case we find an excellent agreement between
Heidemann’s and the analytical BHE solution as evi-
denced in Fig. 1.23. We have to note that the present
analytical BHE solutions are invalid for variations in a
time scale shorter than about 3.5 hours according to the
limit (1-107). Using limit (1-108) input variations can-
not be simulated even below about 10 hours for lami-
nar flow and about 4 hours for turbulent flow. In Figs.
1.22 and 1.24 the short-term temperature behavior of
the analytical and numerical BHE methods are shown
for the laminar and turbulent flow cases, respectively.
They reveal how the analytical method overestimates
the outlet temperature at transient input situations.
However, these errors vanishes in long-term predic-
tions if no longer input variations occur as depicted in
Figs. 1.21 and 1.23. It has been shown necessary to



assign a high thermal conductivity with an anisotropic  A° = 10° Jm 's 'K™' and 2}./2) =0 were cho-

. . xx’ yy
behavior for the inner pipe surplus. For the surplus sen, where the porosity ¢ is set to zero.
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Figure 1.20 Finite-element mesh used for CXA-type BHE model consisting of 239,100 pentahedral elements. Vertical dis-
cretization concerns 100 layers.

Table 1.5 Parameters of the CXA exchanger problem

Parameter Symbol Value Unit
Depth of borehole L 100 m
Borehole diameter D 10 cm
Outer diameters of pipe-in ;) 5 cm
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Table 1.5 Parameters of the CXA exchanger problem (cont.)

Parameter Symbol Value Unit
Outer diameters of pipe-out do, 24 cm
Pipe-in wall thickness by, 4 mm
Pipe-out wall thickness by, 3 mm
Volumetric heat capacity of pipe walls o’ 2.1574 - 10° Jm K
Thermal conductivities of pipe walls VLl 0.38 k!
Initial temperature T,(0) 10 °C
Reference temperature % 10 °C
Total flow discharge of refrigerant: 3
laminar flow pamina 1.0931 md
turbulent flow ohrtuent 21.8624 m’d
Total heat input rate: ¢ X
laminar flow oFmnr (1) 3.1602 - 10 Id
(0 <£<90d)
0.0
(90d < £ < 180d)
turbulent flow Ul ) 6.3203 - 10° yd!
(0 <£<90d)
0.0
(90d < £ < 180d)
Volumetric heat capacity of refrigerant p'c” 4.12984 - 10° Jm K
Thermal conductivity of refrigerant A 0.65 Jm s
Volumetric heat capacity of grout psc? 2.19-10° Jm K
Thermal conductivity of grout 28 2.3 Jm s
0 1

Porosity of soil




Table 1.5 Parameters of the CXA exchanger problem (cont.)

Parameter Symbol Value Unit
Volumetric heat capacity of soil p'e 221-10° Jm K
Thermal conductivity of soil 2 2.2 Jm'sTK!
Anisotropy factor A/ Koy 1 1
Thermal conductivity of pipe surplus 2 10° Jm'sTK!
Anisotropy factor of pipe surplus A/ Moy 0 1
Computed heat transfer coefficients:
laminar flow
pipe-in to grout @ 52.955 [J misﬁKﬁ
pipe-in to pipe-out D, 52.068 [J m72571K71
grout to soil Dy, 195.74 [Jm~ s K
turbulent flow N
pipe-in to grout D 69.326 [J mfzs 1K71]
pipe-in to pipe-out @, 134.14 [J rnfzsflel]
grout to soil D, 195.74 [Im~s K ]
Computed thermal resistances:
laminar flow X
pipe-in to grout Ry, 0.14312 [msK J_l]
pipe-in to pipe-out Ry 0.33963 [msK J_l]
grout to soil Ry 0.016262 [msKJ ]
turbulent flow
pipe-in to grout Ry 0.10932 [msK in]
pipe-in to pipe-out R 0.13183 [msK Jfl]
grout to soil Ry, 0.016262 [msKJ ]

The present turbulent flow case of a single CXA-
type BHE gives opportunity for a mesh convergence
study, where the level of mesh refinement around the
singular BHE node is systematically increased. This
will reflect the statements of Chapter 1.11 regarding an
optimal mesh design for BHE solutions. We test the
accuracy of the solution for a stepwise local refinement
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of mesh Y around the BHE node according to (cf. Fig.

1.25)

Y

1=0,1,2,....8

(1-174)

where / is the refinement level of mesh Y,. Starting
with Y, consisting of a regular triangular tesselation
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Figure 1.21 Temperature history at pipe outlet of the
CXA-type BHE for laminar flow compared to Heide-
mann’s solution.
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Figure 1.22 Short-term temperature history at pipe outlet
of the CXA-type BHE for laminar flow.
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Figure 1.23 Temperature history at pipe outlet of the
CXA-type BHE for turbulent flow compared to Heide-
mann’s solution.
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Figure 1.24 Short-term temperature history at pipe outlet
of the CXA-type BHE for turbulent flow.



Figure 1.25 Different mesh refinement levels for CXA-type BHE located in the centre of the domain

(100x100m?). Vertical discretization concerns 20 layers.

characterized by a BHE nodal distance A of about 4.42
m, the number of triangular prisms NE and total num-
ber of nodes NP then increase according to the refine-
ment level /, while the BHE nodal distance A is halved
in value for each refinement level /:

NE = 32(32+1)- (NS 1)

= +D+17-
NP = [16(34+ 1)+ 1]- NS -175)
A =2'A  Axgf=4sm NS=21
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where the BHE node (in the central position of the
domain) is locally refined from level to level / (see
Fig. 1.25). For the mesh convergence test only a verti-
cal discretization consisting of 20 layers (number of
slices NS = 21) with a vertical spacing of
Az = L/(NS—1) = 5m is considered.

The simulations by using the analytical BHE
method are performed up to a maximum refinement
level of / = 8. At that level the BHE nodal distance
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with about 1.7 cm is clearly smaller than the physical
borehole radius of , = D/2 = 5 cm . Using estimation
method 1 (1-164) from Chapter 1.11 we can expect an
optimal BHE nodal distance A of about 0.333 m (with
n = 8), which would require a refinement level of about
4 (A,~0.276 m) to attain suited accuracy. Indeed, the
simulations reveal that the best agreement to Heide-
mann’s reference solution is for Y, as evidenced in
Fig. 1.26 for the turbulent flow case. As revealed both
coarse meshes (Y,/<4) and higher dense meshes
(Y, I>4) under- and over-estimates, respectively, the

reference solution for the outlet temperature. If the
nodal distance falls below the physical borehole radius
r, the elements within A<r, have to assigned to a
high thermal conductivity to break the further increase
of the temperature at the borehole. The method 2 as
described in Chapter 1.11 is also tested for an optimal
BHE nodal distance A. Method 2 results a value of
A = 0.277m, which is somewhat smaller than the
method 1°s estimation of 0.333 m, but also confirms
refinement level Y, as the best, say optimal, mesh.
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Figure 1.26 Outlet temperature at # = 90 d of the CXA-type BHE for turbulent flow versus the
BHE nodal distance A. Refinement levels Y; (/ =0,...,8) in comparison to Heidemann’s refer-
ence solution. For levels / = 6-8 solutions with high contrast of the thermal conductivity
A =10"Tm's 'K for elements smaller than physical borehole radius , = 0.05m are also

incorporated. Analytical BHE method is used.

The results for the optimal Y, mesh give very good
agreement with Heidemann’s reference solution as

shown in Fig. 1.27 for the full history of outlet temper-
ature. Although the mesh of level Y, is about 10 times



coarser (consisting only of 23,040 pentahedral ele-
ments) than the mesh studied above (Fig. 1.20) consist-
ing of 239,100 pentahedral elements, the quality of the
results is comparable (cf. Fig. 1.27 vs. Fig. 1.23).
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Figure 1.27 Outlet temperature history of the CXA-type

BHE for turbulent flow simulated with optimal mesh of

refinement level 4, Y, (analytical BHE solution) com-

pared to Heidemann’s solution.

1.13.4 BHE solution versus fully dis-
cretized 3D model (FD3DM)
solution applied to a double U-
shape pipe system

Comparisons between the proposed BHE solution
and a fully discretized 3D model solution (FD3DM)
are performed for heating operation of a 2U configura-
tion located in central position of an aquifer domain
measuring 20 m x 20 m in horizontal directions and 55
m in depth. The used meshes for both solutions are
shown in Fig. 1.28 revealing a much more refined tes-
sellation for FD3DM to discretize appropriately the
interior geometric structure of the 2U exchanger. In
both meshes, however, the vertical discretization is the
same by using 55 layers. For the 2U exchanger prob-
lem the used parameters are summarized in Tab. 1.6. In
FD3DM 1D discrete feature (fracture) elements have
been used to model the internal pipes. It was necessary
to assign the inner pipe surplus to a high thermal con-
ductivity of solid with anisotropy. For the surplus we
took a value of A* = 10° Jm's 'K ' with an anisot-
ropy factor of 1_/2; = 0. In the surplus we use a
porosity ¢ of zero.

Table 1.6 Parameters of the 2U exchanger problem

Parameter Symbol Value Unit
Depth of borehole L 55 m
Borehole diameter D 12 cm
Outer diameters of pipes-in ‘e d 32 cm
Outer diameters of pipes-out ,doy 32 cm
Pipes-in wall thicknesses by by 2.9 mm
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Table 1.6 Parameters of the 2U exchanger problem (cont.)

Parameter Symbol Value Unit
Pipes-out wall thicknesses by1sb,s 2.9 mm
Pipe distance w 4.2 cm
Volumetric heat capacity of pipe walls o’ 2.1574 - 10° Jm K
Thermal conductivities of pipe walls A, 20 LW 0.38 Jm s
Total flow discharge of refrigerant 0, 38.284 m’ d_l
Total heat input rate 0, 6.3242 - 10° 7d!
Reference temperature % 10 °C
Inlet temperature T, 50 °C
Volumetric heat capacity of refrigerant p'c” 4.12984 - 10° Jm K
Thermal conductivity of refrigerant A 0.65 Jm s
Volumetric heat capacity of grout pse? 2.19-10° Jm K
Thermal conductivity of grout 28 2.3 Jm s
Porosity of soil g 0.2 1
Porosity of pipe surplus € 0 1
Volumetric heat capacity of groundwater o' 42-10° Jm K
Volumetric heat capacity of soil p'e’ 2.405 - 10° Jm K
Thermal conductivity of groundwater v 0.65 Jm s
Thermal conductivity of soil N 2.46 Jm s
Anisotropy factor A/ Moy 1 1
Thermal conductivity of pipe surplus N 10 Jm s
Anisotropy factor of pipe surplus A/ Moy 0 1
Longitudinal thermo-dispersivity of aquifer o 0.5 m




Table 1.6 Parameters of the 2U exchanger problem (cont.)

Parameter Symbol Value Unit
Transverse thermo-dispersivity of aquifer ar 0.05 m
Initial temperature T,(0) 10 °C
Computed heat transfer coefficients: N
pipe-in to grout D 91.624 [J rnfzsflel]
pipe-out to grout Dy 91.624 [J mfzsflel]
grout to grout 1 Dy 802.43 [J mfzsflel]
grout to grout 2 D 31.702 [J m_zs_lK_l]
grout to soil D, 181.02 [Im~s K ]
Computed thermal resistances: .
pipe-in to grout R 0.1326 [msK Jfl]
pipe-out to grout Ry 0.1326 [msK Jfl]
grout to grout 1 Ry 0.02077 [msK Jfl]
grout to grout 2 Ry 0.26287 [msK Jfl]
grout to soil Ry, 0.05861 [msKJ ]

A comparison between the BHE solutions to fully
discretized 3D model (FD3DM) is shown in Fig. 1.29
for the short-term outlet temperature history, in Fig.
1.30 for the long-time outlet temperature history and in
Fig. 1.31 for the vertical temperature profile after 12
hours. As revealed the agreement between the different
solutions is quite well. For long-term predictions the
analytical BHE simulation has shown reasonably accu-
rate and fast, while the numerical BHE computations
became superior to the analytical BHE solution at
short-term predictions and in a well agreement with the
FD3DM results from beginning. In Fig. 1.31 the verti-
cal temperature profile of grout is not evaluated for
FD3DM because the grout temperature considerably
varies within the mesh nodes in the borehole at that
early time.
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For the FD3DM a forward Adams-Bashforth/back-
ward trapezoid time integration scheme with a RMS
error tolerance of 10" has been used. It took 276 time
steps for the simulation period of 365 days. For the
BHE solutions always a forward Euler/backward Euler
time marching predictor-corrector scheme with a RMS
error tolerance of 10° was preferred due to better
robustness for this class of problems. The analytical
BHE required only 227 time steps. In contrast, the
numerical BHE computations failed for the long-term
run because the adaptive time step control could not
increase the time steps anymore and a very large num-
ber of time steps would follow. Obviously, this is
caused by random effects triggered from the stiff
matrix system by poor numerical precision of the only
8 byte floating point mantissa.
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Figure 1.28 Finite-element meshes for (a) BHE consisting of 130,185 pentahedral ele-
ments and (b) FD3DM consisting of 1,204,665 pentahedral elements. Both meshes are
vertically discretized by 55 layers.
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The good agreement of the BHE solutions with the
FD3DM results demonstrates the accuracy and practi-
cal applicability of the new BHE modeling strategy. Its
numerical efficiency and capability will be more appar-
ent for arrays of BHE.
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Figure 1.29 Short-term outlet temperature history of the
BHE solution in comparison to the fully discretized 3D
model (FD3DM) solution measured at the pipe’s outlet.

1.14 Application to Borehole
Thermal Energy Stores

Borehole Thermal Energy Stores (BTES) consist of
a large number of borehole heat exchangers typically
installed with spacing in the range of two to five meters
as the thermal interaction of the individual borehole
heat exchangers is essential for an efficient storage pro-
cess. BTES can be a reasonable technical and economi-
cal alternative - depending on the local geological and
hydrogeological situation - to other techniques of heat
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Figure 1.30 Long-term outlet temperature history of the
BHE solution in comparison to the fully discretized 3D
model (FD3DM) solution measured at the pipe’s outlet.
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Figure 1.31 Analytical BHE solution of temperature pro-
file at # = 12 hours in comparison to the fully discretized
3D model (FD3DM).
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storage for the use in solar assisted district heating sys-
tems with seasonal heat storage. However, BTES are
very sensitive to groundwater flow. Both for permit
procedures required by the authorities and for plant-
engineering issues, simulations are needed which are
capable of predicting the three-dimensional tempera-
ture profile in the underground and the thermal effi-
ciency of the store. Together with the new BHE option
of FEFLOW the simulation of such installations is a
feasible task.

1.14.1 Dynamic coupling with the
energy simulation program
TRNSYS

In order to simulate the interaction of an array of
BHE with the supply of energy to housing areas
advanced capabilities are necessary. Using FEFLOW’s
open programming interface IFM a Qt-based module
has been developed which allows to couple FEFLOW
with the transient systems simulation code
TRNSYS!”8. This way it is possible to model the com-
plete energy transfer cycle for instance between an
array of solar panels, the connected buildings and a
subsurface heat storage system together with the ther-
mal interaction with the surrounding rocks. The
FEFLOW-TRNSY S-coupling module processes a vari-
able number of BHE which can be connected using
arbitrarily complex circuits. An example of the modul’s
user interface is shown in Fig. 1.32.

The interface enables the exchange of a pipe inlet
flow rate and inlet temperature from TRNSYS to
FEFLOW and of the resulting outlet temperature back
to TRNSYS. In addition, the flow direction can be

switched and the temperature of selected observation
points can be reported to TRNSYS. This coupling is
performed using the remote procedure protocol RPC’.
The counterpart to FEFLOW’s IFM module is a new
developed TRNSYS type called Type331.

For users who want to interlink BHE without using
TRNSYS there is also a standalone option available. In
this case the operation is controlled by three power
functions (for flow rate, temperature and flow direc-
tion).

1.14.2 Numerical simulation of real-
site BTES Crailsheim, Germany

To investigate the influence of moving groundwater
on BTES of real dimension, the recently built BTES in
Crailsheim, south-west Germany was simulated. For
more information about Crailsheim BTES see Bauer et
al’ and Rieger'®. The Crailsheim BTES consists of 80
double U-tube BHE with 55 m in length installed on a
circular area with 30 m in diameter. The BTES is situ-
ated in a geology comprising two aquifers. It is covered
with soil and heat insulation (Tab. 1.7). The properties
of the used BHE are given in Tabs. 1.8 and 1.9. Within
FEFLOW’s new BHE configuration dialog the Eskil-
son and Claesson’s analytical BHE method was cho-
sen. Only one iteration is performed per each time, but
a stronger RMS error tolerance of 10° concerning the
AB/TR automatic time-stepping control was selected.
With these selections a fast but also accurate computa-
tion could be achieved. The linkage of the single BHE
within the BHE array is shown in Fig. 1.32. It reveals
that always two BHE are interlinked, where one BHE
located on an outer circular range is connected to a
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Figure 1.32 The user interface of the new IFM module for connecting BHE arrays.

BHE located on an inner circular range within the BHE
array.

For the finite element meshing of the BHE array
additional point add-ins were introduced. This was par-
ticularly done to attain an optimal nodal distance A
around each single BHE of the array. According to
Chapter 1.11 an optimal BHE nodal distance A of
about 0.4 m (by using n = 6) was chosen for the
unstructured mesh. Finally, the total study area of 2000
m x 2000 m was discretized by 21,337 triangular pris-
matic elements per layer. In the vertical direction the
used finite element mesh consists of 24 layers with a
thickness between 0.5 m and 40 m; within the BTES
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the slice distance is 5 m in maximum.

The simulation was conducted for a time range of
five years featuring an alternation between one heat
inserting period and one heat extracting period of
approximately six months per year. In addition to this
cycle there is also a daily change of the inflow temper-
ature during the heat-storing period. Due to the day/
night variation a cycle of 8 hours with a temperature of
80°C and 16 hours with 40°C can be presumed. The
latter temperature represents the output temperature of
a buffer storage tank. Since a computation over 5 years
with these daily fluctuations is time consuming, an
approximated time-weighted mixture temperature of
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53.33°C is used for the first cycle (heat-storage). After total. The settings of the TRNSYS deck file are per-
a time range of 185 days the flow direction of the formed in the so called Simulation Studio of TRNSYS
refrigerant is reversed and the inlet temperature is (Fig. 1.33). The total inflow rate for all 80 BHE is 8064
reduced to 10°C (period of heat extraction). These two  1/h.

cycles are repeated for the following years, five in

Table 1.7 Simulation parameters of Crailsheim BTES site

Extent Hydraulic | Hydraulic Porosity | Volumetric | Thermal
below top gradient | conductivity heat conductivity
. ground capacity
Formation surface 1'% . pscs 2
3 -1 : Jm3K! Tl k!
[m] (-] [ms™] [-] [Jm ] | Um™s ]
. —12 —6 6
Soil cover 0-15 / 1-10 1-10 2.20-10 2.10
Heat insulation 1.5-2 / 1.10 "2 1-10° 1.28 - 10° 0.08
Sandstone (Keuper) 2-24 0.01 57-10° 0.01 2.60 - 10° 1.95
24-61 / 1-107° 0.01 2.40 - 10° 246
Limestone (Muschelkalk) ) 5
61-103 0.0045 1.31-10 0.01 2.40 - 10 2.46
Basement 103 - 200 / 13110 0.01 2.40 - 10° 246

Table 1.8 Physical properties of 2U BHE used for Crailsheim BTES site

Property fluid pipe grout
pe [Im?K N 413-10° | 216-10° | 2.19-10°
A [ImlsTK 0.6405 0.38 23
u [kg m'ls'l] 5.47-10°" - -
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Figure 1.34 shows two temperature profiles of the
subsurface at different times for the fifth year of heat

Table 1.9 Geometric injection/extraction. In Fig. 1.35 the history of outlet

relations ?fZU,BHE used temperatures of all 80 BHE is plotted. These figures

for Cralls.helm BTES illustrate the impact of alternation of the seasonal heat

site loading and extraction of the storage and reveal how

those BHE which are located in the inner circular range

Geometry [m] of the BHE array get water which has been already

i d 0.0262 cooled down because it circulated before through the
Lo i outer range of the BHE array - or vice versa.

di,d, 0.032

Figure 1.36 depicts a cross-sectional profile of tem-

§ 0.09 perature along the main direction of groundwater flow

D 0.13 after a fifth year BTES operation of alternating heat

— loading and extraction and indicates the movement of

L 55 heat slowly drifting outside the BTES due to thermal

conduction and advection. It is obvious that the real
hydrogeological conditions of the BTES site are impor-

= Simultion tudio - [Craiisheim3a mported.Importedtpi -mx|  tant for efficiency and reliability of the subsurface heat

B B == storage system. Related environmental impact studies
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& lie] At for a long-term operation of BTES become necessary.

% w‘ 1:3' Egi?:”““s The present simulation results represent a scenario with

2| S Iy oot use of schematic hydrogeological parameters, which

= S was confirmed by the regular authorities for Geology,

% s et L Resources and Mining of Baden-Wiirttemberg

| e oga, (| sa il (LGRB). Further more detailed investigations and

f 5 ) Py Pracmme modeling studies for the BTES Crailsheim site are
® () Solar Themal Colectors .

gl Q3 Tt ongoing.
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Figure 1.33 Linking the new TRNSYS type 331 for con- In this paper, the details in numerical modeling of

necting FEFLOW in the TRNSYS Simulation Studio. single BHE and arrays of BHE in FEFLOW are

reported. Four types of vertical BHE are supported:
double U-shape (2U) pipe, single U-shape (1U) pipe,
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Figure 1.34 Temperature distribution around the array of 80 BHE computed with FEFLOW and coupled with TRNSY'S: (a) at the end of the heat injection
period after 4 years and 180 days. (b) after 5 years.

80 | FEFLOW

coaxial pipe with annular (CXA) and centred (CXC)
inlet. BHE system modeling is applicable for 3D heat
or thermohaline problems. The thermal processes can
be dependent on the groundwater flow regime, thermal
capacity and conductivity of the subsurface as well as
fluid viscosity and buoyancy effects if density variable
flow conditions occur. For handling BHE arrays an
IFM interface module has been developed, which is
capable of linking with the energy simulation program
TRNSYS.

The paper describes the basic theory of BHE model-
ing. Starting with the general formulation of the bal-
ance equations for flow and heat transport in BHE pipe
system and surrounding soil, efficient finite element
solution strategies are derived and thoroughly
described. There two principal approaches: (1) The
analytical BHE method based on Eskilson and Claess-
son’s solution, (2) numerical BHE method based on Al-
Khoury et al.’s solution. While the latter is more gen-
eral and accurate both for short-term and long-term
analyses, the analytical solutions strategy has shown
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Figure 1.35 History of outlet temperatures of all 80 BHE.

highly efficient, precise and robust, however, not appli-
cable for short-term processes (a temporal scale in
order of seconds, minutes or few hours). But, this limi-
tation of the analytical method is usually not relevant
for real BHE applications, where the thermal processes
is measured in days and years.

The BHE systems are modeled by 1D finite-element
representations, where the thermal exchange both
within the BHE configurations consisting of pipes and
grout material zones and with the surrounding soil is
subjected to thermal transfer relationships. For this pur-
pose improved relationships for thermal resistances of
BHE are introduced. Pipe-to-grout thermal transfer
possesses multiple grout points for 2U and 1U BHE to
attain a more accurate modeling. The numerical solu-
tion of the final 3D problems is performed via a widely
non-sequential (essentially non-iterative) coupling
strategy for the BHE and porous medium discretiza-
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tion.

Using BHE in regional discretizations optimal con-
ditions of mesh spacing around singular BHE nodes are
recommended. The direct estimation of the nodal dis-
tance can be sufficient under practical conditions. Such
optimal meshes have shown superior to those discreti-
zations which are either too fine or too coarse. Com-
monly, over-refined meshes around BHE nodes require
the assignment of high contrast of thermal conductivity
of elements within the BHE radius. But, an optimal
mesh spacing around BHE avoids such kind of manip-
ulations and the solutions become faster and more (or
similarly) accurate, even realized on coarser meshes.

To input all relevant BHE data specific dialogs are
available in FEFLOW. The computational results for
BHE are displayed in diagrams showing vertical tem-
perature profile and outlet temperature in time for each
BHE. The number of BHE can be arbitrary. To support
BHE arrays an IFM module has been developed which
provides tools for interlink BHE. Furthermore, this
module also allows the coupling of FEFLOW with the
energy simulation program TRNSYS to control and
dispatch the complete energy transfer cycle for real-site
applications.

To illustrate and benchmark FEFLOW’s BHE func-
tionality, a number of test and example problems are
posed and solved. The proposed BHE solution strate-
gies result very good agreements with analytical solu-
tions. Detailed comparisons to reference finite-
difference solutions are given for a single coaxial-type
BHE under laminar and turbulent flow of refrigerant. It
shows the advantage of the analytical Eskilson and
Claessson’s solution method for long-term analysis. If
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Figure 1.36 Cross-sectional temperature profile through the center of the BTES (green line) oriented to the main
groundwater flow direction after the fifth year of BTES operation.

applied to optimal mesh configurations the solutions
have shown very efficient and accurate. Additionally,
comparisons are provided to finite-element solutions
resulting from a fully discretized 3D model (FD3DM).
The good agreement of the BHE solutions with the
FD3DM results demonstrates the accuracy and practi-
cal applicability of the new BHE modeling strategy.
Finally, a practical application to BTES consisting of
80 BHE is given for the real-site BTES Crailsheim,
Germany. The simulations are supported by the specifi-
cally developed FEFLOW-TRNSY'S coupling module.
Scenarios indicate the effect of the groundwater flow
regime on efficiency and reliability of the subsurface
heat storage system.
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Appendix A

Analytic evaluation of matrix elements
for the 1D pipe element

We consider the following linear 2-node element e
(see Fig. 1.37)

Q-

1
A
\° 4

§=-1 3

X
n

e

N

2

\

~
—

z=

Figure 1.37 Shape functions of 1D element.

with the basis functions at the nodes 1 and 2

Ny = 31-9)
(A1)

Ny = 3(1+8)

and their derivatives

ON, 1
o8 2
; (A2)
ON, 1
F
Furthermore, we have for the element
z = Nyz; +N,z, (A3)
The Jacobian is given
0z _ ON 1 6N2 L
W= 5= 58t 580 = 3 (Ad)
and accordingly its inverse reads
~1 1 2
J === AS
E (A

Then, the divergence terms appearing in (1-101a) to (1-
101f) become with (A2)

oN,

1
2 N
W=yhoe| =L (A6)
VN, oN,| |1
& L

For a 1D pipe element we have for the volume and sur-
face element, respectively,

dQ

Adz = alde - LLa
(A7)
dr

SL
Sdz = S|Jde = == dg



where 4 is a cross-sectional area and S is the specific
exchange surface given in (1-71). In case of 2U
exchangers we will assume that the radii for the two
pipes-in and two pipes-out are equal, i.e., we define

=i

0
ol

_ i o _ _ o0
T Vs Ty T T s T

i —
! =
= r?,. Accordingly, we find for cross-sec-
tional areas 4 of the inner pipes and for the grout zones

2U 1U CXA CXC
A r(rl)’ r(rl)’ () -9 ()’
A 2y’ SCAY () S CARNEAS!
; 1D* o2 1D* | o2 D> L2
Ao | oAagee] | AT ATeed] -
0 1D* L2 1D* L2 D> L2
s [3g-0V] RErRll ” [F-ed]

In using these relationships the matrices (1-101a) to (1-
101f) become for element e
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and

(A8)
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where A" = |L'].
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Appendix B

Element matrices of the 1D-2U pipe
element

The 1D 2U pipe element e consists of two nodes
with each eight degrees of freedom (8-DOF) as shown
in Fig. 1.38. Accordingly, the local element matrices
yield following forms:

lo I:Til Ti2 Tol ToZ Tgl TgZ Tg3 Tg4]1

I:Til T[Z Tol T02 Tgl Tg2 Tg3 Tg‘Jz

Figure 1.38 1D 2U 8-DOF element.



o; 0 0 0 0 0 0 0
00 0 0 0 0 0 0
0 0 00 0 0 0 0 0
o= |0 00 050 0 0 0
00 0 00,0 0 0
00 0 0 0050 0
00 0 0 0 0 Oy 0
[0 0 0 0 0 0 0 0
(D (2

il i2 o1 02 gl g2 g3 g4 i1 i2 ol 02 gl g2 g3 g4
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(1) 11 12
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where the coefficients of the element submatrices
11 12 11 12 11 12
. o K, K, R R, .
0] = 0'2 0122 o K= 70 U Ry =70 | efe. are given
1 1 1
0[ O[ Kil Kil R[ Ri
from the expressions (A9) to (A13).

The remaining part of the R, matrix has to be
assembled for each element e linked to the correspond-
ing soil nodes s. Such type of element also consists of
two nodes but with only one degree of freedom (1-
DOF) as shown in Fig. 1.39.

1O (1],

Figure 1.39 1D Rf, 1-DOF element.

The local element matrix R reads simply

11,12

R, R

Bl o
RS RS‘

determined from (A11).

(B3)
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Appendix C

Nomenclature

Roman letters

'y

So o=

Z 2o NN SRR SN R Qo S R

z
=

N

(S

L2

L
L2 T72®71
L

17!

L
L
1
1
1

LT
LT
mL
L

1

L
~1

2

cross-sectional area;

pipe wall thickness;

specific heat capacity;

borehole diameter;

thermal diffusivity;

inner diameter of pipe;

pipe diameter;

= —g/|g| , gravitational unit vector;
viscosity relation function;
number of grout zones;

gravity vector;

= |g|, gravitational acceleration;
thermal sink/source term;
hydraulic head;

unit (identity) matrix;

Jacobian matrix;

hydraulic conductivity tensor;
number of soil-pipe nodes;
length of 1D pipe element;
length of pipe, depth of borehole;
error norm specifier, p > 1 ;
shape function vector;

number of soil s nodes;

Nusselt number;

normal unit vector

outward);

(positive

Prandtl number;
flow supply;

FEFLOW | 91



92 | FEFLOW

0, LT , pumping rate of well;

0, ML*T total heat input rate of BHE;

0, L’r ! total refrigerant flow discharge of
BHE;

q L7 vector of volumetric Darcy flux of
fluid;

q,7 M7 normal heat flux of soil (positive
outward);

R M'L'7© thermal resistance;

R, R, M 'L T°® borehole thermal resistances;

R space of matrix;

Re 1 Reynolds number;

r L radius;

S L specific exchange surface;

S, L storage coefficient;

s L diagonal pipe distance;

T ® temperature;

T; ® pipe inlet temperature of refrigerant;

T, ® pipe  outlet temperature  of
refrigerant;

t T time;

u Lr! vector of refrigerant fluid velocity;

u L7 = |u| refrigerant fluid velocity;

v L7 auxiliary velocity variable;

w 1 spatial weighting function;

w L pipe distance;

x L Eulerian spatial coordinates;

X, V, 2 L Cartesian coordinates;

X 1 scaler for thermal resistance of pipe
k;

z L vertical coordinate;

Greek letters
o, ar L longitudinal and transverse thermo-

3()

NAR ©O®

AT g T

)

408 & 5

Subscripts
b
EOB

MLT 0!
MLT 0!

MLT@™!
ML !

1

ML

dispersivity, respectively;
numerical thermo-dispersivity in
longitudinal flow direction;

thermal expansion coefficient;
boundary;

weighting coefficient of pipe & ;
BHE nodal distance;

error tolerance;

Dirac delta function;

volume fraction, porosity;
weighting coefficient;

upwind parameter;

tensor of thermal hydrodynamic
dispersion;

tensor of thermal hydrodynamic
dispersion for refrigerant;

thermal conductivity;

dynamic viscosity of fluid;
auxiliary variable for pipe £ ;

fluid density;

iteration number;

mesh refinement at level /;

heat transfer coefficient;

specific heat transfer coefficient;
specific thermal flux;

domain;

Nabla (vector) operator;

borehole, well;

extended Oberbeck-Boussinesq
approximation;
grout;

pipe-in or internal;



vy o X

Superscripts
CXA
CXC

N T OO S O~ x0mhN o~

o =
cc e

Abbreviations

BC

BE

BHE

BTES

CXA

CXC

DOF

pipe index;

time plane;
pipe-out or outer;
pipe;

soil;

coaxial pipe with annular inlet;
coaxial pipe with centred inlet;
internal;

element;

fluid;

grout;

pipe index;

refinement level,

time plane;

outer;

pipe;

boundary;

refrigerant;

solid or soil;

transpose;

single U-shape pipe;

double U-shape pipe;

boundary condition;
backward Euler scheme;
borehole heat exchanger;

borehole thermal energy store(s);

coaxial pipe with annular inlet;
coaxial pipe with centred inlet;
degrees of freedom;
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FD3DM
FEFLOW
FEM
IFM

NE

NP

NS

RHS
RMS
RPC

TR
TRNSYS
10

1D

2U

3D

fully discretized 3D model;
finite element flow simulator;
finite element method;
interface manager;

number of elements;

number of points (nodes);
number of slices;

right-hand side;

root mean square;

remote procedure protocol;
trapezoid rule scheme;
energy simulation program;
single U-shape pipe;
one-dimensional;

double U-shape pipe;
three-dimensional,;
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